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ARTICLES

Beyond Sin and Cos

MARTIN E. MULDOON!

York University
North York, Ontario M3J 1P3, Canada

ABRAHAM A. UNGAR

North Dakota State University
Fargo, ND 58105

1. Introduction

The higher-order circular and hyperbolic functions deserve to be better known. Here
we give their main properties in order to make them more accessible to teachers and
students in calculus, linear algebra and differential equations courses. The study of
these functions can be related to such diverse topics as the binomial theorem and the
fast Fourier transform.

Here, for each positive integer n, we define r functions F* (x), r=0,1,...,n— 1.
The cases =1 and a= —1 correspond, respectively, to what are usually known as
generalized hyperbolic functions and generalized circular or trigonometric functions.
We find it useful to retain the parameter a; the case a=0 also gives something
interesting.

The functions considered here are elementary and can be a rich source for student
projects and investigations.

2. Background

The trigonometric functions can be generalized in many ways, some of them indis-
pensable in the applications of mathematics. We mention, for example, the Bessel
functions [40], special cases of which have been around since the time of Euler, the
hypergeometric functions [30] and their various generalizations. But the deeper study
of these functions becomes difficult very quickly and so they are little studied except
by those who need them for some application. It is of interest therefore to note that
there exists a class of functions that preserve the elegance and simplicity of the
trigonometric functions and that is easily presented to students in elementary courses.
These generalized circular and hyperbolic functions have been rediscovered often
since the first recorded account by Vincenzo Riccati in 1757. They preserve the flavor
of striking results like Euler’s formula

e'* =cos x +isin x, (1)

"The work of this author was supported by a grant from the Natural Sciences and Engineering Research
Council (Canada).

3


http://www.jstor.org/page/info/about/policies/terms.jsp

4 MATHEMATICS MAGAZINE

the determinantal identity

COS X sin x
—sinx cosx

=1 (2)

and the matrix identity

( cos x sinx)( cos y siny)=( cos(x+y)  sin(x+y) ©)

—sinx cosx )| —siny cosy —sin(x +y) cos(x+y)

They also satisfy differential equations similar to the equations y' —y =0,
y" —y =0, and y" +y =0, satisfied by the exponential, hyperbolic, and trigonomet-
ric functions, respectively.

In spite of their simplicity and the length of time they have been around, the
generalized circular functions are seldom discussed in textbooks. (An exception is [14],
pp- 336—339). This may be because they do not seem to have obvious applications.
(See, however, the recent references [28],[42],[20],[15],[9].) We believe that the
value of the study of these functions lies rather in their compelling intrinsic beauty
and in providing a rich source of examples and motivation in various elementary
courses.

3. The Generalized Hyperbolic Functions

We can define the exponential function by the usual sum

3
exp(x) = Z 'kT_1+x+§T+3I

In the case of the hyperbolic functions we take every second term in this sum:

e x2k+1 xs
sinh(x)= E m=x+§r+ ey
k=0 ! !

2

i ka X
cosh(x) = —— =14+ + ...
(x)= L Gr 3T

An obvious way to generalize this is to take every nth term in the sum. Thus, for any
positive integer n, we define the n a-hyperbolic functions of order n, F?,, on the
real line (or in the complex plane) by the infinite power series,

k
F.(x)= Z W xker

=0

x" axtr a2x2n+r
=+
! (n+r)!+(2n+r)!
r=0,1,...,n—-1,
where a is real (or complex). For consistency we take
Ef(0) = 1.

The function F,*, is called the a-hyperbolic function of order n and rth kind.
There is a single a-hyperbolic function of order 1; it is the exponential function
F?y(x)=e**. There are two a-hyperbolic functions of order 2; these are the
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functions Fg(x) = cosh(Vax) and Fg(x)=(1/Va)sinh(Vax), where Va is an

arbitrarily specified square root of a, giving rise to the circular functions (a= —1)
and the hyperbolic functions (a=1) as special cases. Similarly, there are three
a-hyperbolic functions of order three, and so on.

Writing the infinite series in the definition of F,
the relationship

a
i, r

explicitly, one may readily find

Fe(x) =(Va) (Vax),  (a0) (4)

where Va is an arbitrarily specified nth root of a. Although (4) shows that the case
a # 0 can be reduced to the case @ = 1, retaining the a preserves a certain elegance
in the formulas. It is also interesting to see, in Section 5, how the case a = 0 gives rise
to polynomials; without the explicit use of the parameter a, this connection might go
undetected. Like the circular and hyperbolic functions, the a-hyperbolic functions are
generated by particularly simple differential equations normalized by “natural” initial
conditions. The a-hyperbolic function of order n and rth kind F?.(x) satisfies the
differential equation

fO(x) = af(x) (5

normalized by the initial conditions

dn=]0 k#r,0<k<n-1,
f200) {1, k=r.

Moreover, differentiation permutes the a-hyperbolic functions cyclically, apart from a
factor a in one case:

d EX (%), 0<r<n-—-1,
Fa (x)= n,r—1
dx e aFf,(x), r=0.

4. The Generalized Euler Formula

Our definition can be shown to lead to the generalized Euler formula

n n-1l . r
e = ¥ (Va) Ef (x) (6)

r=0

where Va is an arbitrarily specified nth root of a. Obviously, this reduces to (1) in
case n =2, a = — 1. Since there are n nth roots of a, we see that (6) is actually a
system of n linear equations. In Section 9, we will use the Fourier matrix to show that
the system (6) can be solved for the F*,, r=0,...,n — L, to give

v, ro

—rn-—1

FX.(x)= %—(’:/E) k{_‘,o w; exp[ wk ’;/Zr_x]. )

Here w, = exp[2i/n] is a primitive nth root of unity. Actually, in the cases a = +1,

(7) has been used to define the a-hyperbolic functions; see, e.g., [13], p. 212.
Formula (7) may be used to express all the a-hyperbolic functions in terms of

trigonometric and exponential functions. In the case a =1, the three a-hyperbolic
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functions of order 3 are

Fio(x)= -% e*+2e7*/? cos%],
F; (x) =% e"—2e""/2cos(ig—£ + %) ,

and

2 3

The first of these follows easily from (7). The others can be obtained then from (7) or
by successive differentiation of the first one. Ficure 1, produced using GNUPLOT?,
gives graphs of the hyperbolic functions Fj ;(x) for k=0,1,2. In the case n =4, we

F;a(x) = % e —2¢7*/? cos( Y3z W)J

200 T T T T T T T

1501 2_4

100+
50 7
0

-12-10-8 -6 '-4 -2 0 2 4 6

FIGURE 1
F}(x)vs. x,k=0,1,2.

get the elegant formulas
F} o(x) = (1/2)(cosh x + cos x),
F}(x) = (1/2)(sinh x + sin x), ®)
F}y(x) =(1/2)(cosh x — cos ),
F}3(x) = (1/2)(sinh x — sin x).

5. The a-hyperbolic Matrix

To exhibit the generalization of identities (1) and (2) provided by the a-hyperbolic
functions we define the n X n a-hyperbolic matrix H(x) by the equation

F%o(x) FEe(x)  Ef(x) o Ef(x)]
O‘F.f,lu—l(x) F,ffo(x) Fyf,’l(") E,"fu_g(x)

H,?(X)= aFncfn—z(x) aEn,n—l x) Ela,{O x) Fno,‘n—:}(x) . (9)
i “Fffl(x) aFS(x) “Fans(x) Fn"fo(x) ]

The a-hyperbolic matrix H,*(x) is factor-circulant, that is, it is a matrix obtained by
multiplying by & each of the elements below the main diagonal in a circulant matrix.
Factor-circulants are considered by Ruiz Claeyssen and dos Santos Leal in [28]; see

*Copyright (C) 1986, 1987, 1990, 1991 Colin Kelley, Thomas Williams.
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also [27]. The factor-circulant matrix generalizes the notion of circulant matrix (a = 1)
and skew-circulant matrix (@ = —1) [10]. Circulant matrices have interesting and
useful properties ([10],[6]) that are shared by factor-circulant matrices, e.g., for an
arbitrary fixed n and a the factor-circulant matrices form a ring under matrix addition
and multiplication.

In [36], the name “a-hyperbolic matrix” was applied to the transpose of HX(x),
rather than to H,*(x) itself. The resulting matrix, the result of multiplying the
elements above the main diagonal in a circulant matrix by @ was described in [36] as
factor-circulant. Our current terminology seems more appropriate in view of the
notation used in [28] and the notation for skew-circulant matrices in [10]. It follows
from what was shown in [36], that the a-hyperbolic matrix HX(x) satisfies the
identities

Hi(x)l =1, nx], (10)
and
Hy(x) Hi(y)=H(x+y), nxzl, (11)

for all real (or complex) x and y, where |H(x)| is the determinant of the matrix

H?(x), and where - denotes matrix multiplication. We will see shortly how these
results follow from a study of differential equations in matrix form. Identities (10) and
(11) reduce to identities (2) and (3) when n=2 and a= —1. When n=1, (11)
reduces to the exponential identity

eaxeay =ea(x+y).

6. A Connection to the Binomial Theorem

For n > 0 and « = 0 (with the usual convention that 0° = 1), the a-hyperbolic matrix
H(x) is upper triangular,

) . x2 x(n—l)
or (n—1)!
x(n—2)
0 1 «x —
HO(x) = (n—=2)!
n x)— x(n—3) ’ (12)
00 1 CE
0 0 0 .. 1

from which identity (10) is obvious, and identity (11) is a matrix form of the binomial
theorem; see [36] and [17]. This can be seen by considering

x2 2
1 x 3 1 y -2L|
0 1 x 0 1 Yy
0 1 0 0 1

1 x+y ——,L(x;- )2
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Every entry above the diagonal in the right-hand matrix is of the form (x + y)* /k!,
and it is obtained by multiplying a row of the first matrix on the left by a column of
the second matrix on the left. This product is seen to contain exactly those terms that
arise in the binomial expansion of (x +y)*/k!. Thus we have what amounts to a link
between the binomial theorem and the theory of ordinary differential equations; this
has been emphasized in [34] and [37]. The binomal theorem has a long history [7] and
is found throughout the mathematical literature mainly in treatises on combinatorial
analysis, statistics, and number theory. In literature on differential equations, however,
it usually appears only as a tool; see, e.g., [31], p. 404.

7. Differential Equations in Matrix Form

H.} is the unique solution of the matrix differential equation

o1 0 ... O
0o 01 ... O
w=|oo
0 0 0 ... 1
a 0 O 0

that satisfies M(0)=1I. That it is a solution is easy to verify. Its uniqueness follows
from standard results in the theory of systems of differential equations; see, e.g., [5],
Ch. 3. In fact, if we write

0 1 0 0
0 0 1 0
A='£' 2
0 0 0 1
a 0 O 0

we find that
H;(x) = exp( Ax),

with the usual notation for the exponential of a matrix [5, §3.11]. By the usual theory,
the Wronskian of such a matrix is constant so we find that det H*(x) = det H*(0) =1,
i.e., the equation (10). We may also recover (11) with this formulation: For each fixed
y, both sides of (11) are matrix solutions of the system M’ =AM, satisfying M(0) =
E(y). Hence, by uniqueness, they are identical.

It is of interest also to remark that

A"=al. (13)

One way to see this is by direct computation. (Taking successive powers of A causes
an upward shift in both the 1's and the a’s) It is also a consequence of the
Cayley-Hamilton theorem, according to which A satisfies its own characteristic
equation det(AI —A)=0; expanding by the first column, det(Al —A)= A"+
(=D HM=aX=-D""'=A"-a.

Equation (13) shows that H,” satisfies the n-th order matrix differential equation

M®™ = aM
analogous to the nth-order scalar differential equation (5) satisfied by F,*,(x). In fact
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H? is the unique matrix solution of the system
M™W=aM, M®0)=A4A%  k=0,1,...,n-1.
Another way to express the relationship between H,*(x) and A, motivated by the
special cases in [14], pp. 337-339, is
n—1
Hi(x)= L Ef(x) A%
k=0

We remark that in the case a =0, the matrix H(x) given by (12), has the familiar
form [5] of the matrix e**, when

0 1 0 0
0 0 1 0
A=.§ .
0 0 O 1
0 0 O 0

8. Miscellaneous Results

There are simple formulas for the Laplace transforms of the generalized a-hyperbolic
functions. The Laplace transform of F (at), 0 <r<n, n=1,2,..., where a and «
are real constants, is

Su—r—lar

s"+aa,’

fwe'“F“ (at) dt=
0

n,r ( 14)
Perhaps the simplest way to see this is to use the differential equations (5) and the
well-known relations for Laplace transforms of derivatives of functions. It should be
mentioned that the generalized 1-hyperbolic functions are related to the Mittag-Lef-
fler function
o k
x
E (x)= -,
/(%) kg:o F(yk+1)

which is important in the theory of entire functions. The relation is F} ;(x) = E,(x").

9. The Fourier Matrix

n

The Fourier matrix %, is defined by

[ 1 1 1 . 1]
2 -1
n o, ce wl’l’
— 2 4 2(n—-1
=11 2% ) ce XD (15)
- - TS
] 1 w,rll 1 w'?( n=1) L w,(.n 1)

where ®, =e>"/" is a primitive nth root of unity. This is the matrix that arises in

connection with the discrete Fourier transform; see, e.g., [32] and [38]. &, connects a
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column vector of complex numbers y =[y,, y,,...,y,_, T, with its “Fourier coeffi-
cients” ¢ =[cy,c,...,c,_;]" by the equations

y=Fe, =5 ly. (16)

It is a fundamental fact, easily proved by using 1 + 0, + w? + ... + @) ™' =0, that
! =n"'F, where the bar denotes complex conjugate. There are at least two ways
in which the Fourier matrix is connected with the generalized hyperbolic functions. In

the first place, equation (6) holds, where Va is an arbitrarily specified nth root of a.
Since the nth roots of a are of the form

n n n
/E,w,,x/;,...,w,',"l\/z,

(6) is actually a set of n equations, which in matrix form may be written:

oV F?o(x)
Va Ef\(x)
=.Z; e
n n-1

(Va)  Eg,y(x)

Using 7' =n~'F,, we easily invert (6) to get (7). Battioni [2] gives the relations (8)
between functions of orders 4 and 2, a special case of the more general result

F, (x)=[F. (x) +E; (x)]/2, r=0,1,...,m—1, (17)
Fyp ron(x) = [F3 (x) =E; L (0)]/2, r=0,1,...,m-1, (18)

given in a different notation in [13], (33), p. 216. Formulas (17) and (18), which
express generalized hyperbolic functions of even order in terms of those of half this
order, can be proved in several ways. One way is directly from the series definitions.
Another is to show that the functions on both sides of (17) and (18) satisfy the
differential equation

fE(x) =f(x), (19)

while both sides of (17) satisfy the initial conditions

o <]0 k#r, 0<k<n-1
£%(0) {1, ker

and both sides of (18) satisfy the conditions
foO)=0, O0<k<n-1.

It is instructive to see how the proof of (17) and (18) can be deduced from precisely
the same technique as is used in explaining the “fast Fourier transform” or FFT
([32],[33]). (The aim of the FFT is to perform the multiplications in (16) quickly,
when n is large, by halving n repeatedly. We illustrate one such step, with n = 2m.
The process can be repeated if n is a power of 2.) We have from (7),

2m~-1

1 -
F2lm,r(x) = 2—771' kZ w2mk exp[a)émx] (20)
=0
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or, in terms of the Fourier matrix,

F2lm,0(x) e’
Fl X ) 1 e e")2m:t
2m,l( ) — m%m
F2lm,2m-l(x) ewg’,ﬁ'lx

The idea behind the fast Fourier transform is that the matrix multiplication in the
equation

Yom-1 Com-1

can be achieved in slightly more than half as many steps as would be needed in direct
multiplication by splitting the vector on the right-hand side into even and odd
components, multiplying these half-size vectors

T T
ceven=[CO’C2""’c2m—2] > coch:[Cl’CS""’CZm—l] ’
by %, and putting the resulting vectors
_ T__?-—' _ T_=
u= [uO""’um—l] =ImCeven> v= [UO"“’Um—l] _zncodd
back together by taking
yj=uj+w2',fnvj, j=0,1,...,m—1,
Yjem =Uj = Og00;, j=0,1,...,m—1.

In the present situation, we have

2 am-2 1T 3 am-1,1T
ceve" = [6*"6")2')'1"."6")2:1: x] s codd= [ewimx,ewhnl,.." 6“’211; I] .

Then, using 0f, = w,,, we see that (7), with a= l,r\l/g= 1, and = — 1,'\1/&—= ®y,,
respectively, gives

Fnl.,o(x)
Fn& 1(x)

u=m g s
Frrll,m—l(x)
and

Eo(x)
-1
v=m meFm,l(x)

of  Fr ()

Using this we get (17) and (18).
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10. Graphs and Roots

Here we confine ourselves to the case a = +1. See Ficure 1 for the graphs in the
case a = 1,n = 3. Battioni [2] provides graphs in a few cases for small values of x. Of
course certain results are immediate. From the power series, when n is even, F, (x)
is even or odd according as r is even or odd. In case a= —1,F, , is a penodlc
function of x for n = 2 but is known not to be periodic for larger values of n (13, p.
216). This can be seen (also for a= 1) by using Floquet’s theorem [3, p. 325]. Of
course, it may happen that some particular combination of higher-order functions is
periodic; for example:

F!o(x) — F{ 3(x) =cos x.

The exponential function has no roots. The circular (hyperbolic) functions have only
real (purely imaginary) roots. What about the higher-order functions? F, !(x) has a
r-fold real root at the origin, but the question of how many other real roots there are
is more difficult. Results of Mikusifiski [22] show that each such function has infinitely
many positive roots and that the smallest positive root x, satisfies

(r+n-1!  2(r+n-1)!

The graphs provided by Battioni [2] indicate that the lower bound is quite sharp. A
deeper study of the complex roots has been undertaken by H. Alzer [1] who provides
two new proofs of a result of G. P. Meyer that F, (z) has infinitely many roots.
Generalizing results of G. Pélya and of A. Wiman, Alzer shows that all the roots of
F) ,(z) lie on n rays starting at 0 and passing through the roots of z" = —1. He shows
also that the nonzero roots are simple.

Ficure 1 would seem to indicate relations such as equality of Fj 0(ac) and F; (x) at
the roots of F;,(x). But this is an illusion, based on the fact that ¢* is negligible for
even moderate negative values of x.

11. History

The history of the a-hyperbolic functions is a fascinating tale of discovery and
rediscovery. Most of the history deals with just the cases a= +1. The paper by
Kaufman [19] reveals that these functions were dealt with by Vincenzo Riccati [25],
son of the better-known Jacopo [23] as early as 1757. (Note that according to Katz
[18] the usual trigonometric functions did not enter calculus until about 1739 and
then as a result of Euler’s efforts to solve linear differential equations.) The general-
ized functions also appear in the work of H. Wronski in 1811 and, according to [19],
are the subject of a chapter in his book [41]. Wronski’s name is a familiar one to
students of differential equations, but only through giving his name to the “Wronskian.”
See the accounts given in [12], [11, pp. 57-59] as well as the remark in [29, p. 78n]
for further information on this fascinating character. The first journal article on the
generalized functions and hence the first account to be still reasonably available [24]
appeared in 1827 in the second volume of Crelle’s journal. Kaufman cites more than
two dozen 19th-century references to the functions and a similar number in the first
half of the 20th century. Some of these references are to rediscoveries. Though it is
hard to quantify such an opinion, it seems to us that, compared to similar bibliogra-
phies on other topics, a large proportion of the references are to obscure sources,
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though many (such as [39]) are easily available. One might expect that, with the
passage of time, these functions would find their way into standard textbooks and
reference books. For the most part this does not seem to have been the case. A
notable exception is the five pages in Chapter 18 in the last [13] of the three volumes
arising from the Bateman Manuscript Project at the California Institute of Technology
in the late 1940s. Nevertheless, the functions have continued to be rediscovered, e.g.,
in 1969 by Battioni [2], in 1978 by Ricci [26], and in 1982 by one of the present
authors [35]. They were discussed in 1987 by Kittappa [20], in 1988 by Good [15], and
in 1989 by Coonce, Strachan, and Wiest [8]. The idea of using a general a to unify
the special cases a = 11 was used by the second author [36] in 1984.

It is interesting to quote some of Davis’ remarks on circulants in the Preface
to [10]:

...The theory of circulants is a relatively easy one. Practically every
matrix-theoretic question for circulants may be resolved in “closed form.”
Thus the circulants constitute a nontrivial but simple set of objects that the
reader may use to practice, and ultimately deepen, a knowledge of matrix
theory.

Writers on matrix theory appear to have given circulants short shrift, so
that basic facts are rediscovered over and over again. ...

It seems that, mutatis mutandis, these remarks apply also to the generalized
hyperbolic and circular functions.

The first-named author first came across these functions in reviewing Battioni’s
paper [2] in 1972 (see Math. Rev. 45 (1973), #599) and was unaware at that time of
the long history of these functions. He was aware of it by the time he reviewed Ricci’s
paper [26] in 1980 (see Zbl. fiir Math. 423.33008). The second-named author
published a note [35] on these functions in 1982 before some of the references given
here were drawn to his attention by the first-named author. We hope that this account
will help to make these functions more widely known and that others will be led to
study the deeper properties of these fascinating functions.

Of course, apart from those mentioned in the Introduction, there are kinds of
generalizations of the circular and hyperbolic functions that are different from those
described in this paper. In this connection we mention references [4] and [21], for
example.

Acknowledgements. We are grateful to several referees for corrections and constructive comments.

REFERENCES

L. H. Alzer, Die Nullstellen der Hyperbelfunktionen hoeherer Ordnung, Dissertation, Rheinisch
Friedrich-Wilhelms Universitat, Bonn, 1983.

2. G. Battioni, Su una generalizzazione delle funzioni iperboliche e delle funzioni circolari. Riv. Mat.
Univ. Parma (2) 10 (1969), 39-48.

- G. Birkhoff and G.-C. Rota, Ordinary Differential Equations, 3rd edition, John Wiley & Sons, Inc.,
New York, 1978.

. B. A. Bondarenko, Generalized hyperbolic functions. Dokl. Akad. Nauk UzSSR, 1978, 10-13.

. M. Braun, Differential Equations and their Applications, 3rd edition, Springer-Verlag, New York, 1983.

- R. Chalkley, Circulant matrices and algebraic equations, this MAGAZINE 48 (1975), 73-80.

- J. L. Coolidge, The story of the binomial theorem, Amer. Math. Monthly 56 (1949), 147-157.

- H. B. Coonce, R. A. Strachan and M. Wiest, True trigonometry, talk given at MAA Fall Meeting, North
Dakota State University, October 27-28, 1989.

. H. B. Coonce, Permutable polynomials for several variables, Aequationes Math. 44 (1992), 292-303.

[e I B RS BTN w

©


http://www.jstor.org/page/info/about/policies/terms.jsp

14 MATHEMATICS MAGAZINE

10. P. J. Davis, Circulant Matrices, John Wiley & Sons, Inc., New York, 1979.

11. P. J. Davis and R. Hersh, The Mathematical Experience, Birkhiuser, Basel-Boston-Stuttgart, 1981.

12. J. Dobrzychi, Jézef Maria Hoéne-Wroiiski, Dictionary of Scientific Biography, 15, pp. 225-226,
Scribner’s, New York, 1978.

13. A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. 3,
McGraw-Hill, New York, 1955.

14. A. E. Fekete, Real Linear Algebra, Marcel Dekker, Inc., New York and Basel, 1985.

15. I J. Good, A simple generalization of analytic function theory, Expo. Math. 6 (1988), 289-311.

16. E. Atlee Jackson, Perspectives on Nonlinear Dynamics, Vol. 1, Cambridge University Press, 1990.

17. D. Kalman and A. Ungar, Combinatorial and functional identities in one-parameter matrices. Amer.
Math. Monthly 94 (1987), 21-35.

18. V. J. Katz, The calculus of the trigonometric functions, Historia Math. 14 (1987), 311-324.

19. H. Kaufman, A bibliographical note on the higher sine functions. Scripta Math. 28 (1967), 29-36.

20. R. Kittappa, A generalization of the rotation matrix and related results. Lin. Alg. Appl. 92 (1987),
251-258.

21. A. L. Markushevich, The remarkable sine functions, trans. by Scripta Technica, trans. edited by L.

Ehrenpreis, American Elsevier, New York, 1966.
. J. G. Mikusiiiski, Ann. Soc. Polon. Math. 21 (1948), 46-51.
. A. Natucci, Vincenzo Riccati, Dictionary of Scientific Biography, 11, pp. 401-402, Scribner’s, New
York, 1975.

24. L. Olivier, Bemerkungen iiber eine Art von Functionen, welche #hnliche Eigenschaften haben, wie die
Cosinus und Sinus, J. Reine Angew. Math. 2 (1827), 243-251.

25. V. Riccati, Opusculum sextum: Epistolae tres, in quibus aequationes aliquae differentiales evolvuntur
per series, Opusculorum ad res Physicas, & Mathematicas pertinentium, Vol. 3, Bologna, 1757.

26. P. E. Ricci, Le funzioni pseudo-iperboliche e pseudo-trigonometriche, Publ. Instit. Mat. Appl. Fac.
Ingr. Univ. Stud. Roma, quaderno no. 12 (1978), 37-49.

27. J. C. Ruiz-Claeyssen, M. Davila and T. Tsukazan, Factor block circulant and periodic solutions of
undamped matrix differential equations, Mat. Apl. Comput. 3 (1983), No. 1.

28. J. C. Ruiz-Claeyssen and L. A. dos Santos Leal, Diagonalization and spectral decomposition of factor
block circulant matrices, Lin. Alg. Appl. 99 (1988), 41-61.

29. G. F. Simmons, Differential Equations with Applications and Historical Notes, McGraw-Hill, New
York, 1972.

30. L. J. Slater, Hypergeometric Functions, Cambridge University Press, Cambridge, UK, 1960.

31. M. R. Spiegel, Applied Differential Equations, Prentice-Hall, Englewood, NJ, 1961.

32. G. Strang, Linear Algebra and its Applications, 3rd edition, Harcourt Brace Jovanovich, New York,
1988.

33. G. Strang, An Introduction to Applied Mathematics, Wellesley-Cambridge Press, Cambridge, MA,
1986.

34. A. Ungar, Addition theorems for solutions to linear homogeneous constant coefficient differential
equations. Aequationes Math. 26 (1983), 104-112.

35. A. Ungar, Generalized hyperbolic functions, Amer. Math. Monthly 89 (1982), 688-691.

36. A. Ungar, Higher order alpha-hyperbolic functions. Indian J. Pure Appl. Math. 15 (1984), 301-304.

37. A. Ungar, Addition theorems in ordinary differential equations, Amer. Math. Monthly 94 (1987),
872-875.

38. J. M. Walker, Fourier Analysis, Oxford University Press, New York, 1988.

39. L. E. Ward, Some functions analogous to trigonometric functions, Amer. Math. Monthly 34 (1927),
301-303.

40. G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd edition, Cambridge University Press,
Cambridge, UK, 1944.

41. H. Wronski, Reforme Absolue du Savoir Humain, 3 Vols., 1847-48.

42. W. W. Zachary, An inverse scattering formalism for higher-order differential operators. J. Math. Anal.
Appl. 117 (1986), 449-495.

88


http://www.jstor.org/page/info/about/policies/terms.jsp

VOL. 69, NO. 1, FEBRUARY 1996 15

A Round-Up of Square Problems
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Introduction

Are squares, as their name suggests, really the boring “nerds” of the geometric world?
We think not, and have gathered a number of our favorite problems that we hope
show the square to be a fascinating figure. Many of the results deserve to be (and
indeed are) theorems, but much of the fun seems to be in presenting the material in
the form of problems. You are challenged to find your own solutions, and we hope you
won’t jump too quickly to the solutions we have provided.

The problems are, at least roughly, divided into sections according to the number of
squares involved. Many of the problems are new, at least to us, and others may be
familiar to some readers. Even then, some novelty is found in most of the solutions,
and in several places we have uncovered unexpected connections among what at first
may seem to be unrelated problems. A concluding section provides some sources,
though it is not always easy to know who deserves first credit. There should be little
harm in rediscovering a neglected gem, and much interest and pleasure to be gained.

Problems About One Square

Problem 1. A square is erected,
either externally or internally, on
the hypotenuse of a right triangle.
Show that the line segment from
the vertex of the right angle to the
center of the square makes 45°
angles to the legs of the right
triangle.

Solution 1. Here are two nice ways to solve this problem.

(a) viatiling: Adding congruent
copies of the right triangle to the
remaining sides of the given square
gives us a second square that makes
the result visually obvious. The
segment through the center of the

second square is along a diagonal of
the new square, so it bisects the
right triangle.

/
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(b) via the inscribed angle theorem: Both the
internally and externally erected square cases can
be shown together. Construct the circle centered
on the hypotenuse of the right triangle. The legs
of the right triangle and the segments to the
centers of the squares intercept 90° arcs on the
circle. By the inscribed angle theorem, each
inscribed angle has half the measure of the 90°
arc, namely 45°.

Problem 2. Congruent right triangles are
erected to the sides of a square, facing
alternately outward and inward as shown.
Show that P, Q, R, and S are collinear.

Solution 2. Combining the tilings shown in
the solution of Problem 1 reveals that P, Q,
R, and S are all on the diagonal of a
circumscribed square.

Problem 3. The shaded triangle at the right is formed by
drawing segments from corners of the square to the midpoints
of opposite sides, as shown. Show that the triangle is a right
triangle with sides in the proportion 3:4:5.

Solution 3. There is an elegant tiling solution, formed by
overlapping the given figure in a square grid containing the

points §, 2, and $ along the edges of the square.
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Problem 4. Let m and be positive integers with m > n.

The shaded right triangle, A ABC, is constructed in an m by

m square as shown. Show that the triangle has sides in the ™"
integer proportions

(m? —n?): 2mn: (m? + n?).

(Note: Choosing m and n relatively prime and of opposite parity, it is well known
that all primitive Pythagorean triples are of the form m? —n?, 2mn, and m?*+ n.

Thus the construction realizes all of the right triangles with integer sides in appropri-
ately sized squares.)

Solution 4. The square AEFG can be viewed as being F m-nB8
dissected into four triangles, as shown. We then obtain
the area equation m-n

n G

area( AEFG) = area(A ADE) + area(A ABG) + area(ABFD) + area(A ABD).

Letting

a=BC,b=AC,c=AB=AD=Vm?>+n?,

we see that the area equation becomes

2
g_mn mn (m—n)  ac
m B) + B) +——2 + 5 -

Solving for a we find a = (m® —n?)/c, from which we learn that

B gt (c* — a%c?) _ (c*—ac)(c? +ac)
c? c?

_(mP+nP—m?P+n®)(m* +nP+m?—n?)  dmPa

c? c?

That is, b = 2mn /c. Writing ¢ = ¢®/c = (m® + n?) /c we see that

2 _ 2 2, 2
a=(7n n),b=2mn’c=(m +n).
c c c

Therefore, a:b:c = (m?—n2):2mn:(in? + n?).
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Problems About Two Squares

Problem 5. A square is created by connecting each vertex of the unit square to a
point on a nonadjacent side, as shown in these three examples. What is the area of

each shaded square?

1/2 2/3 2la

Solution 5. In each case, an inscribed square grid makes the answers readily apparent
as shown below. In each case the triangular regions lying in the exterior of the original
unit square are paired with a congruent triangle within the unit square that lies
outside the shaded square region. The dark-shaded squares are seen to have respec-
tive areas , 5 = %, and %

Problem 6. Find the area of the shaded square
contained within the unit square as shown, where
0<r<l1. 1-r
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Solution 6. A vertical segment drawn from a vertex of the shaded square to the
opposite side has length 1 — r, compared to a length of V1 +r? of

a corresponding segment in the unit square. Thus the ratio of r —r
similarity is (1 — r)/ V1 + r?, making the area of the =<7
shaded square 1 fae d

Ry g
a={=r) I .

1+r2

oo _ 2 _\ 3] 9 _
For example, if r= %, then A= =TT

in agreement with the dissection solution shown in Problem 5.

Problem 7. Let the squares ABCD
and AB'C’'D’ share a vertex at A, D 8
where both squares are labeled ;

clockwise.

(a) Show that the segments BB’ and
DD’ are the same length and lie on
perpendicular lines.

(b) Let P be the point at which the
perpendicular lines BB’ and DD’
intersect. Show that the line CC’
also passes through P, and is an angle
bisector.

(c) Show that the line AP
is perpendicular to line CC".

Solution 7. (a) A 90° rotation about
point A transforms A ABB' onto

A ADD’, showing that the triangles

are congruent. In particular, BB' = DD’
and are contained in lines that cross

at 90°.

(b) Draw the circumscribing circles of
each of the squares. These circles
intersect at A and P so (cf. Solution
1(b)) by the inscribed angle theorem
we see that PC and PC' are

each angle bisectors of the right
angles at P.

(c) Since the rays PA and PC intercept diametrically opposite points A and C of the
circumscribing circle, £ APC is a right angle.

Remark. An alternate proof of parts (b) and (c) can be based on the results of part
(a) and Problem 1.
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Problem 8. Let squares ABCD and D a B
AB'C'D’ share a vertex (as in Problem

7). Show that the midpoints, Q and
S, of the segments B'D and BD'
together with the centers R and T
of the squares form another square,
ORST.

Solution 8. A pair of congruent
parallelograms, AB'ED and BFD'A
have Q and S as their respective
centers. Since a 90° rotation about R
transforms AB'ED onto BFD'A we
see that RS and RQ are congruent
segments meeting at 90°. Similarly,
QT and ST are congruent and
orthogonal, so it follows easily that
QRST is a square.

Remark 1: This result is sometimes known as the
Finsler-Hadwiger theorem. It will be convenient
later to refer to QRST as the Finsler-Hadwiger
square determined by the given squares sharing a vertex at point A. Note that the
entire configuration is uniquely determined by the three points A, R, and T.

Remark 2: A visualization of the generation
of the Finsler-Hadwiger squares is provided
by tiling the plane with the octagon
shown above. The centers of the
parallelograms and squares are seen to
form a square grid. A second square grid, of
twice the linear size, is formed by the
translates of the square CEC'F. This same
tiling can also be used to visualize the
results of Problem 7.

Remark 3: The result of Problem 8 is actually a special case of a more general
theorem that is elementary yet of interest.
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THEOREM. Let F, and F, denote two directly similar figures in the plane, where
P, € F, corresponds to Py € F, under the given similarity. Let r €(0,1), and define
F,={(1 —r)Py+rP;: PyE€ F,}. Then F, is also directly similar to F,,.

Proof. We assume the figures are in the complex plane, so that the similarity has
the form z — az + b, where a and b are complex constants with a # 0. Thus F, is
mapped to F, by the map

0,(z)=(1-r)z+r(az+b)=(1—r+ra)z+1b,

which has the form of a direct similarity transformation. |

An example of the theorem is
illustrated in the diagram at the right,
where the figures are squares and
r = 3. The Finsler-Hadwiger
theorem is the special case where F,
and F, share a common vertex.

Problem 9. Squares have been
inscribed in congruent isosceles
right triangles in two different ways.
Which square has the larger area?

Solution 9. Triangular grids
show that the respective areas are
2 and £. Thus +, or about 53%,
more of the triangle’s area is
covered by the square on the left.

4/9
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Problems About Three Squares

Problem 10. Two side-by-side squares are constructed
on a horizontal segment. The upper left-most and
right-most vertices are then used as opposite vertices of
a tilted larger square. Show that the large square has one
vertex on the horizontal segment and another vertex on
the extension of the common vertical sides of the small
squares. Then compare the areas of the three squares.

Solution 10. The configuration described in the problem
statement is a thinly-disguised confirmation of the
Pythagorean theorem, which is surely the most famous
result about three squares in all of geometry. The
dissected figure at the right makes it visually clear that
the area of the large square is the sum of areas of the two
smaller squares. The dissection is attributed to Tabit ibn
Qorra (826-901), and was rediscovered in 1873 by Henry
Perigal.

Problem 11. Given any triangle ABC, erect
outward facing squares on all three sides. Three
additional triangles are then constructed, as
shown in the figure. Show that all four triangles
have the same area.

Solution 41. The tiling shown in the solution
to Problem 8 provides a simple way to see why
the triangles have equal area: extend each outer
triangle to a parallelogram. Drawing the
opposite diagonal forms triangles that are all
congruent to A ABC, and therefore have areas
equal to the original triangle of the problem.
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Problem 12. Outward facing squares
with centers D, E, and F are erected
on the sides of an arbitrary triangle
ABC. Next, parallelograms are
constructed as shown, determining
P, Q and R. Show that the segments
AD, BE, and CF are concurrent at a
point O that is the center of the
circumscribed circle of A PQR.

Solution 12. The result is evident in the beautiful tiling shown below. For example,
we easily see that 90° and —90° rotations about D will take the point A to P and Q,
respectively. Thus AD is the perpendicular bisector of PQ.
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Problems About Four or More Squares

Problem 13. Let squares be erected
externally on the sides of a triangle I~
ABC, with centers D, E, and F. ,

(a) Show that the midpoints K, L, !

and M of the sides of A ABC coincide / D

with the centers of the squares /
erected internally on the sides of /

triangle DEF. !

(b) Show that the centers P, Q, and  *~.
R of the squares erected externally

on the sides of AKLM coincide

with the midpoints of the sides of

ADEF.

The properties also hold if internally

and externally are interchanged.

Solution 13.

(a) The Finsler-Hadwiger square (shown
dashed) determined by the squares centered at
D and E (see Remark 1 in Solution 8) has one
vertex at M, the midpoint of side AC. But M is
also seen to be the center of the square with side
DE.

(b) Construct squares with diagonals
AB and BC. The Finsler-Hadwiger
square corresponding to the squares
whose diagonals are AB and BC has

P, the midpoint of DE, as a vertex.
Clearly P is also the center of the
externally erected square on side
KL. D
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Problem 14. Construct squares whose diagonals are the sides of a quadrilateral
ABCD. Let K, L, M, and N denote the external vertices, and P, Q, P’, and Q' the
internal vertices, of the squares, as shown at the left below.

(a) Show that P=P’ if and only if Q = Q’, as shown above on the right.
(b) In the case that P =P’ (and Q = Q’), show that:

e the midpoints of the sides of ABCD form a square, EFGH;

o the center, O, of square EFGH is also the midpoint of segment PQ;

e the sum of the areas of the two squares sharing vertex P is equal to the sum of the
areas of the two squares sharing vertex Q.

Solution 14. Suppose that P=P'. Then the squares with diagonals AB and CD
generate the Finsler-Hadwiger square EFGH, which has its vertices at the midpoints
of the sides of ABCD. By Remark 1 following Solution 8, there is a unique square
centered at F which, together with the square AQ'DN, generates EFGH as their
corresponding Finsler-Hadwiger square. But this square, centered at F, has diagonal
BC, so Q = Q'. By the result in Problem 13(a) (which is Neuberg’s theorem), applied
to ABQP, we deduce that the center O of the square with side EF is at the midpoint
of QP. By the result of Problem 7, the diagonals AC and BD lie on perpendicular
lines; thus, as easily follows from the Pythagorean theorem, AB* + CD? = BC? + DA2.
This equation shows that the sums of the areas of opposite squares are equal.

Problem 15. Squares are erected externally on K.~
the sides of quadrilateral ABCD, with centers - \
E, F, G and H. Show that the segments EG and L
FH are congruent and lie on perpendicular lines. B \
Similarly, if J, K, L, and M are the midpoints E c
of the dashed segments shown, prove that JL
and KM are congruent segments that lie on VN
perpendicular lines, with the length of these Y / \ 0
segments 2 times the length of EG and FH. \ / /
J \
\ M
/
!
/

Moreover, show that all four lines are concurrent,
intersecting at point O at 45° angles. \ H
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Solution 15. The configurations discovered
in some of the preceding problems provide
the keys. By Problem 13, the squares with
diagonals EF and GH have a common vertex
at the midpoint of AC, as we see in the
figure at the right. Similarly, the squares with
diagonals FG and EH have a common vertex
at the midpoint of BD. Problem 7 showed us
that EG and FH are congruent and lie on
perpendicular lines, that the same property
holds for JL and KM, and that all four lines
are concurrent. Moreover, the common length
of EF and GH is twice the length of the side
of the Finsler-Hadwiger square (shown
dashed) formed by the centers of the newly
constructed squares. Similarly, the common
length of JL and KM is twice the length of
the diagonal of the Finsler-Hadwiger square.

Sources and Additional Remarks for Selected Problems

Problem 1 was inspired by a problem of Larry Hoehn [8]. The case of the internally
erected square, and the inscribed angle proof, are apparently new. The first case of
Problem 5 is attributed to Heinrich Dérrie by Edward Kitchen [9]. Kitchen’s article
solves the second case with a different tiling than ours, and also discusses a number of
similar problems dealing with squares. Problem 7 (b) and (c), in a slightly different
form, appeared as the first two parts of a problem of Andrew Cusumano [2]; his
references indicate that the problem has reappeared several times beginning in 1919.
A solution to the problem in [11] is similar to ours.

The result of Problem 8, which introduced the Finsler-Hadwiger square [4], is
proved in [5] in a very different way; [5] also contains a list of references, supplied by
Murray Klamkin, related to the Finsler-Hadwiger theorem. The tiling shown in
Remark 2 seems to be a new connection to the theorem (in a strange coincidence,
almost to the day the tiling was first drawn, the same pattern was seen worn on a tie
by comedian Tim Allen in the popular television show Home Improvement!). The
result of Remark 3 was a rediscovery of what Howard Eves calles the fundamental
theorem of directly similar figures [3]; the application to the Finsler-Hadwiger
theorem seems to be new.

Problem 9 was contributed by James Varnadore [12] as a calendar problem, but the
simple dissection proof we have given is new. Problem 11 is due to Bishnu Naraine
[10], who gives a trigonometric solution. A letter of Bo Burbank [1] gives the beautiful
transformational proof we have reproduced. Problem 12 and the tiling shown in the
solution seem to be new. Part (a) of Problem 13 is due to Joseph Neuberg
(1840-1926); see [7]. Problem 14 (a) is a variant of the Douglas-Neumann theorem,
discovered independently by Jesse Douglas and B. H. Neumann in 1940; see [3] for
references. The first part of Problem 15, which shows the congruence and orthogonal-
ity of the segments connecting opposite erected squares on a quadrilateral, is the
well-known theorem of von Aubel (see [9], for example, for a vector proof). The
extensions in Problems 13, 14, and 15 seem to be new, as are the connections to the
Finsler-Hadwiger theorem in those problems.
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On Using Flows to Visualize Functions
of a Complex Variable

TYRE NEWTON

THOMAS LOFARO!
Washington State University

Pullman, WA 99164-3113

Introduction Braden in [2] used Pélya-Latta vector fields [8] to provide a new
geometric interpretation of functions of a complex variable. For a given function F of
a complex variable z, Pélya and Latta associated with each z in the domain of F the
vector whose components are the real and imaginary parts of the complex conjugate
F(z). This technique yields a divergence-free and curl-free vector field when F is
analytic. Moreover, it follows from the Cauchy-Riemann equations that the zeros of
multiplicity one of F(z) are saddles for the flow associated with F(z). Gluchoff in [4]
used this technique to illustrate complex power series.

By further investigating the concept of vector fields associated with F(z), we obtain
some interesting computer graphics that give a dynamic interpretation of functions of
a complex variable. Moreover, these phase portraits can be interpreted in much the
same manner as the Pélya-Latta vector fields of F(z). They illustrate both the index
of a zero or pole of F as discussed by Braden and the properties of power series as
presented by Gluchoff. When applied to series expansions, these graphics give us
visual examples of the approximation properties of truncated series and associated
limitations. The behavior of analytic functions at infinity is also illustrated. These
features are at a level to be appreciated by the undergraduate student when he or she
is first introduced to functions of a complex variable.

Preliminary definitions When we look at the Pélya-Latta vector fields as illus-
trated in [2] we are immediately reminded of the direction fields for 1-dimensional
ordinary differential equations as discussed by Boyce and DiPrima [1, p. 35] and
2-dimensional vector fields as discussed by Hale and Kogak [5, p. 179]. For F = u + iv,
a complex-valued function of a complex variable z =x + iy, (i = V— 1), the equation

£=F(2) M

((') = d/dt) defines a vector field on the domain of F. This is seen by considering the
equivalent 2-dimensional system of differential equations

i=u(x,y), g=uv(x,y) (1)

that associates with each z = x + iy, the vector V.= (u, v), to define the vector field of

'To whom correspondence should be addressed.
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F. The Pélya-Latta vector field considered by Braden and by Gluchoff is the vector
field of the complex conjugate function F.

A function ®(t) = ¢(t) +ip(t) (= (d(), ¥(¢)) that satisfies (1) (or (1)) for all ¢
defines a curve in the z plane (xy-plane). When arrows are inserted to indicate the
direction of flow with increasing time, the result is an orbit or trajectory of (1) (or
(1')). The collection of orbits yields the flow or phase portrait of F. We will also refer
to (1) or (') as vector fields.

We should note that if F is analytic at z, then the Existence and Uniqueness
Theorem for (1') assures us that one, and only one, orbit of (1) passes through each z.
Furthermore, (1) tells us that the velocity vector at z is precisely the value of F(z).
Thus visualizing the velocity vectors of the flow of F truly depicts the behavior of F
over its domain.

Computer graphics Our first example is the function F(z)=e*=¢*(cos y +
isin y). In this case, system (1) becomes

x=e"cosy, y=esiny. (2)

However, since ¢* >0 for all x, the phase portrait for this system coincides with
that of

x=cosy, y=siny. (2)
Note that multiplying a vector field on the right by a continuous function that does
not change sign may change the parameterization of each solution curve, but does not
change the geometry of the orbits. The phase portrait of (2') (or the flow of e?) is
given in Ficure la. Note that the periodicity of e* with respect to its imaginary part is
evident from its flow. In particular, the lines y =nm,n= %1, £2,... are invariant,
reflecting the fact that these lines are mapped onto the real axis by e*.

X)) D)D) )
) M)

D) ) )
SN )

-2 0 x 2

FIGURE 1a
The flow of 2 = e*.

A
A

-2

To illustrate the flow at infinity, we make the change of variable z =1/w so that
behavior in a neighborhood of z = = in the equation % = ¢* is mapped to behavior in
a neighborhood of w =0 in

w= —w2!/v,
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This flow in the xy-plane is shown in Ficure 1b. In Ficure lc we project the flow ¢*
onto the Riemann sphere x? + 4% + (z — 1/2)? = 1/4[17, p. 61]. Keep in mind that in
Ficure lc, {z:|z|> 1} U {=} maps one-to-one onto the upper hemisphere. Note that
the geometry of the solutions in Ficure 1c near infinity is consistent with the geometry
in Ficure 1b. Given the periodicity and regularity observed in Ficure la, the behavior
near infinity for the flow of e® is at first surprising. Recall, however, that on the
Riemann sphere, z = is an essential singularity of ¢* and thus by Picard’s theorem
e” takes on all values (except perhaps one) infinitely often in any neighborhood of
infinity. The dynamics illustrated here have been discussed thoroughly by Hockett and
Ramamurti [6]. The dynamics near essential singularities of the other entire functions
(sin z, cos z, etc.) are not as thoroughly understood.

4 ﬁs—/ i )
74

x Yy
FIGURE 1b FIGURE 1c
The flow of 2 = ¢ in a neighborhood Orbits of the flow of z = ¢* projected
of z=00, onto the Riemann sphere.

We next consider

Log(l+3z) = % ln((l +x)2 +y2) +z‘Arctan(1—+Lx).

In this case (') becomes

'=-;—ln((1 +x)2+y2), g=Arctan(-1—+L£) (3

where — 7 < Arctan(y /(1 +x)) < . Ficure 2a shows the phase portrait of system (3)
(or the flow of Log(1 +2)). Log(1 +z) is plotted so that z = — 1 is the branch point,
and the negative real axis for which z < —1 is the branch cut. The discontinuity of
Log(1 +z) along this ray is reflected in Ficure 2a by the cusps in trajectories
intersecting this ray. Ficure 2b illustrates the flow associated with

1
F(z) = 1+z°
the derivative of our previous function. For this function z= —1 is not a branch
point, but a pole of order 1.
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The flow of Z = Log(1 + z).
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The flow of Z =1/(1 + z). This function has
a simple pole at z = —1. This becomes a
saddle in flow diagram.

As part of the calculations used to generate Ficure 2b, the pole of F(z) becomes a

critical point of the corresponding differential equations. Because z = —1 is a simple
pole, this critical point must be a saddle as is seen in Ficure 2b. This idea will be made
more precise in a subsequent section.

expansion of F(z)=1/(1 + z), namely

11
i= ¥ (-1)"2"
n=0

FIGURE 2c
The flow of the 11th partial sum of the Maclaurin expansion of 1/(1 + z). The 11 zeros of this
polynomial all lie on the unit circle and are sinks, sources, or centers.

Ficure 2c shows the flow associated with the 11th partial sum of the Maclaurin
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One can show using the geometric series that all 11 zeros of this 1lth-degree
polynomial lie on the unit circle. The unit circle also defines the region of conver-
gence for the associated power series. One might speculate that this relationship is
indicative of the boundary of the disk of convergence. However,

d( 1 ad N
#(133)= Ty
n=1
also converges on the open unit disk, yet the zeros of each partial sum of this series all
lie in the interior of the unit disk (this follows from Rouché’s theorem). Ficure 2d
illustrates the flow of the 11th partial sum of this series.

FIGURE 2d
The flow of the 11th partial sum of the Maclaurin expansion of —1/(1 + z)*. The 11 zeros of
this polynomial all lie in the interior of the unit circle and are sinks or sources.

In Ficure 2c we see a drastic change in the dynamics as one passes through the unit
circle. Inside the unit circle the flow is qualitatively similar to the flow illustrated in
Ficure 2b. Exterior to this disk the flow is reminiscent of the flow of ¢* (Ficure la)
and clearly there is no hope of extending the approximation to this region. This sharp
change is not as evident in Ficure 2d and without sound mathematical reasoning one
might guess that this series has a radius of convergence slightly less than one.
However, since the series defining the vector field of Ficure 2d is the derivative of
that of Ficure 2c we know that this is not the case and in fact both series have the
same radius of convergence.

Further analysis of the phase plots In this section we discuss in more detail the
calculations used in generating the phase portraits illustrated here. Consider the
system of differential equations (I') and suppose that z,=x,+ iy, is a zero of an
analytic function F(z). Then the point (x, y) = (x,, y,) is said to be a critical point
of (1). To determine the nature of this critical point we compute the Jacobian matrix |
of the vector field and evaluate at (x, y) = (x, y,). By the Cauchy-Riemann equa-
tions,
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and if A, and A, are eigenvalues of J, then A\, =det J =u2 +u2 > 0 with equality
if, and only if, F'(z) = 0. Thus if F'(z,) # 0 the critical points of the vector field are
either sinks or sources. These types of critical points occur in FIGURES 2a and c.

Now suppose F(z)=P(z)/Q(z) with P and Q analytic, P(z,) # 0 and Q(z,) = 0.
Multiply the numerator and denominator of F(z) by Q(z) and the result by the
scalar |Q(z)|? to give the geometrically equivalent flow G(z) = P(2)Q(z). It follows
that the zeros of Q(z) are at the poles of F, yet the flow lines of G(z) coincide with
those of F(z). Thus the flow of

% =Re(G(x+iy))
g =Im(G(x +iy))

describes the flow of F where the poles of F are zeros of G. Although the vector field
in (5) is no longer analytic, the zeros of G corresponding to zeros of order one of F
(i.e. where P(z) =0 and P'(z) # 0) are sinks and sources, and the zeros of G that are
poles of order one of F (i.e. where Q(z) =0 and Q'(z) # 0) are all saddles in the
phase portrait. In Ficure 2b there is a saddle at z = —1 indicative of a pole at z = —1
for F(z)=1/(1 +z).

Applying the ideas of index theory to complex flows provides us with a visual aid in
determining the multiplicity of a zero or the order of a pole of an analytic function. To
compute the index of a zero z, of a differential equation we simply walk once
counterclockwise around a small circle surrounding z,, counting the number of times
the vector field rotates during our walk. For each counterclockwise rotation of the
vector field, we add one and for each clockwise rotation we subtract one. This can be
done quite easily if we rotate a pencil so that the pencil is tangent to solution curves as
we traverse the circle about z,,.

Let’s first consider poles. The method presented in this paper converts poles of F
to zeros of the vector field G. If F has a pole of order n at z; then G has a zero of
order n at z, and it follows from the Principle of the Argument [7, p. 420] that the
index of G about z is —n. Ficure 3 illustrates the flow of z = G(z) obtained from

Y . 2
F(z)=w,

1

(5)

FIGURE 3
The flow of z=(z— 1(z + 1)*/(z —i).


http://www.jstor.org/page/info/about/policies/terms.jsp

34 MATHEMATICS MAGAZINE

having a pole of order one at z =i. Note that there are 2, and only 2, invariant curves
limiting on the critical point corresponding to the pole of F and trajectories not on
these curves are not asymptotic to the critical point. Index theory guarantees that a
flow diagram of a function having a pole of order n at z; must have exactly n + 1
invariant curves limiting on z,. Thus the order of a pole can be determined simply by
counting the number of invariant curves.

The same techniques can be applied to zeros of F. If F has a zero of order n at z,
then the index of the vector field G at z; is n. This implies zeros of order one appear
as sources, sinks, or centers on our phase portrait. The function illustrated in Ficure 3
has a zero of order 1 at z = 1 and a zero of order 2 at z = — 1. Hence the index about
these critical points is 1 and 2, respectively. What distinguishes these two zeros is the
presence of 2 invariant petals about z= —1 and none about z = 1. In each petal
every orbit is heteroclinic to the critical point. This behavior is again guaranteed by
index theory. In fact, F has a zero of order n at 'z, if, and only if, there exists 2(n — 1)
invariant petals about z,. Thus the order of a zero can be determined simply by
counting the number of petals about the given zero.

Software considerations The plots in this paper were generated on an IBM-com-
patible P.C. using a program written in Turbo Basic. This program utilized the
Runge-Kutta-Fehlberg RKF4(5) integration method [3, pp. 46—48]. However, there
are several other available ODE integration /graphics packages that would give similar
results. These plots can be considerably enhanced using the color option where the
color is determined at each point plotted either by the length of the velocity vector
there, or by whether it was generated for increasing time or decreasing time. The
latter procedure aids in determining direction of flow and whether rest points are
sinks or sources.
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model for the population dynamics of the baleen whale is described by the nonlinear
difference equation (see [2])

X1 =aXy +F(X_,),

where X; is the number of animals in the k-th period (say year), a is a survival
coefficient (typical values are 0,0.2,0.4,0.6, 0.8, 1—in fact anything between 0 and 1)
and F(X;_,) represents recruitment, which occurs with a delay of n periods (typical
values for n are 0,1,2,3,4,5).

An essential step.in the analysis of such equations is the linearization about the
equilibrium points (see [3]). If the associated linear equation is asymptotically stable,
then the corresponding equilibrium point (of the nonlinear equation) is locally
absorbing (see [3]). Absence of asymptotic stability implies that it is the nonlinear
character that fully controls the behavior of the model. To linearize the equation we
set x, =X; — X*, where X* is an equilibrium solution of the nonlinear equation, and
then we keep only the terms that are linear in x;. In Clark’s case each equilibrium
satisfies

X*=aX*+F(X*)
and, if we set B= —F'(X*), the linearized equation (near X*) is
Xpey —axp+ Bxi_, =0, where @, BER and n > 1 is fixed.

The same equation shows up in the linearization of the population model of S. A.
Levin and R. M. May (see [6]). Thus, the asymptotic stability of this equation plays an
important role in these and possibly in other models.

In this work we obtain a simple necessary and sufficient condition on a and g for
the asymptotic stability of the above linear equation. By “asymptotic stability” we
mean existence of a unique limit lim, x;, independent of initial conditions. Since this
is a linear homogeneous equation with constant coefficients, all its solutions are linear
combinations of quantities of the form k"~ 'p¥, where p is a root of the associated
characteristic equation

Z"+1 —az® +B=0

and r=1,2,...,m(p), m(p) being the multiplicity of p. It follows that we have
asymptotic stability if, and only if, the roots of this algebraic equation have absolute
value strictly less than 1 (which, of course, yields lim, x, = 0. For more details see
[5D.

The case a =1 was solved by Levin and May in [6]; they found a necessary and
sufficient condition on B for asymptotic stability. At approximately the same time
(1976), Clark [2] obtained a sufficient condition, namely |a| + |B| < 1, which follows
immediately from Rouché’s theorem. Recently Kuruklis [4] gave a complete answer to
the general case, but his argument is quite complicated. Our approach is simpler,
clear and it can be applied to other cases, namely to the equation

Xpy1 = AXp_y + By, =0.

2. The necessary and sufficient condition for asymptotic stability As we saw in
the introduction, our asymptotic stability question is equivalent to the following

Problem. Let D={z€C:|z| <1} and f(z) =2"*' — az" + B, where @ and B are
real numbers (and n > 1 is an integer). Find the set A in the Ba-plane such that all
the roots of f are in D if and only if (8, @) is in A. In other words, find a (simple)
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necessary and sufficient condition on the coefficients @ and B, in order for the roots
of f to have absolute value less than 1.

Observation. The set A has a symmetry. To see that, we set g(z) =f(—z), so that
the roots of f are in D if and only if the roots of g are. Then we have the following
cases:
(@) If n is even, then g(z)= —[z"*! —(—a)z" — B]. Hence
(B,a)€A ifandonlyif (—B,—a)€A,
which means that, in this case, A is symmetric with respect to the origin of the
Ba-plane.
(b) If n is odd, then g(z) =z"*' —(—a)z" + B. Hence
(B,a2) €A ifandonlyif (B,—a)€A,

which means that, in this case, A is symmetric with respect to the B-axis of the
Ba-plane.

Because of the above observation, to solve our problem it is enough to determine
the set A*={(B,a)€A:a>0}, i. e. the intersection of A with the upper half
(plane) of the Ba-plane. Therefore, the following theorem gives a complete answer to
our problem.

THEOREM. The set A* is a “triangle” with two of its sides (straight) line segments,
while the third side is curved. Its vertices are L(1/n,1 + 1/n), M(—1,0) and N(1,0).
The side LM is straight (with equation a= B+ 1, —1< B<1/n). The side MN is
also straight (thus it is the interval [—1,1] of the B-axis), and the “side” NL is the
curve with parametric equations (see Ficure 1 below)

_ sin@ _ sin[(n+1)6] .
B_sin(nO)’ a= sin(nf) where 0<0<n+1.

(Thus NL is straight only if n = 1. Strictly speaking, the sides LM and NL are pieces
of the boundary JA™ of A™*, but are not included in A™ itself, while the interval
(=1,1) of the B-axis, namely the side MN without its endpoints, is in A*).

YA
L
+1

A+

M N
« > > B
-1 +1
FIGURE 1

Remarks. 1t is easy to check (see Appendix B) that, if a point is moving on the
curve NL, B (and 6) decreases as a increases (unless n = 1 where B stays constant),
The point L corresponds to the value 6 = 0, while at N we have 8= 7/(n + 1). The
concavity of NL can be checked by a routine calculation. NL is an algebraic curve
since sin(n ) is an algebraic function of sin 6.
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Notice that A* depends on n. In fact A" decreases as n grows. This follows from
the fact (which we will see in the proof) that, as n becomes larger, the “side” NL
moves to the left. If we let n — % we obtain the limiting set A+ which is the (honest)
triangle L,MN, where L, = (0,1). In particular, the (line) segment LN liesin A"
for all n (this is Clark’s sufficient condition; see [2]).

Finally, as a corollary of the theorem observe that, if we restrict ourselves to the
case @ = 1, we obtain the range of B from the intersection of the line @ =1 with A*.
This intersection is a line segment, say PQ, where P lies on LM and Q on NL. The
theorem implies that P has coordinates (0, 1). To find the B-coordinate of Q, we set
a =1 in the parametric equations of NL. This gives

sin[(n +1)08] =sin(n@), hence (n+1)8=m—nb,
since 0 < 8 < 7/(n + 1). Therefore 6 = w/(2n + 1) and

_ sin[7/(2n + 1)] _ sin[2n7/(2n + 1)]

sin[nw/(2n+1)] ~ sin[n7/(2n +1)]

_ 2sin[nm/(2n + 1)]cos[nm/(2n + 1)]
sin[nm/(2n +1)]

=2cos[nm/(2n +1)].

Thus, 0 < B < 2cos[n7/(2n + 1)], which agrees with the result of Levin and May [6].
Proof of the Theorem. The proof is divided into three steps.

Step 1. Initial bounds for A™.

The product of the roots of f is +B. We want the roots to be in D, so we must
have |B| < 1. Furthermore, since f'(z) =(n + 1)z" —naz""!, its roots are 0 (with
multiplicity n — 1) and na/(n + 1). (In fact, the only way that f can have a double
root on the unit circle, with >0, is by putting a =1+ 1/n and B=1/n.) If the
roots of f are in D, the roots of f' must also be in D, by a nice and simple (but
relatively unknown) theorem of Lucas (see [1], p. 29). This implies that

la| <

n
Combining these observations we obtain
A*c(-1,1)x[0,1+1/n).

From now on, B, a) will always be assumed to be in [—1,1]1 X [0,1 + 1/n].

Since we are trying to determine the boundary of A*, in many cases below we will
be interested in the (borderline) situation where one or more roots of f are on the
unit circle dD and the rest inside. First, we want to examine whether one of these
roots is — 1. If this is the case then

—(-1)"—a(-1)"=—pB, whichimplies |8l =|1+al=1+a.
This can never happen unless a = 0, which is a trivial case.

Step 2. The left boundary of A*.
Consider the part of the line = a — 1 that lies in [—1,1] X [0,1 + 1/n]. On this
line, f becomes

f(z) =" —az" +a—1=z"(z=1) = (a=1)(z"~ 1)
= (z— ].)[z"_(a_ 1)(Zn—1 422 4. +1)]
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Hence, z, =1 is a root of f. We want to show that all the other roots are in D. First
we treat the case |a — 1| <1/n. If |z| > 1, then

lzn_ (a_ 1)(1”-1 +zn—2 + +l)]
> 2" = la— 1(|Z|”_l + |,:/,|""2 + oo .|_]_)
" ]. ., n—1 . n—2 »
> Jal” = = (121" + =2 4 e +1)

z"—z"_l Zn_zn—2 Zn—l
il el et Y

The remaining case is 0 < @ <1 —(1/n) (remember that a =0 is a trivial case). To
reach this case we start with an a as in the previous case (namely |a — 1| < 1/n) and
we move it toward 0. As we do that, what can happen? Either

(i) all roots apart from z,=1 stay in D; or

(ii) at least one pair of complex conjugate roots z; and %; reach 9D (only the root
z, can become +1 because of the discussion in the previous step).

We now show that (ii) cannot happen. Remember that 8= a — 1. Let z;=¢'’. By
taking conjugates, we can assume without loss of generality that 0 < 6 < 7. Now

el _ geinb o —1=0, which implies |a —e'?| = |a—1].

But this equality is impossible if « and 6 satisfy our conditions. To summarize:

If0<a<1l+1/n and B=a—1, then f has one root z,=1 and all the rest
in D.

Now, fix «a€(0,1+1/n) and move B in the interval (a—1—¢, a—1+ &),
where &> 0 is sufficiently small. Let z,( 8) be the root of f that satisfies z,( ) =1
when B=a—1. It is well defined as long as & stays small, by the above discussion
and, in fact, stays real because there is no other root very near 1 to play the role of its
conjugate. We have

2(B)"" — azo( B)" +B=0.
Differentiation with respect to B yields
(n+1)zizy—nazd 'z, +1=0.
At B=a—1,z,=1, therefore
(n+1)zp(a—1) —nazi(a—1)+1=0 or zy(a—1)(n+1l-na)=—-1.

Since «€(0,1+1/n) we can conclude that z{(a—1)<0. This implies that if
Be(a—1—¢,a—1), then |z,( B)| > 1, whereas if B€(a—1,a—1+¢), then
2o( B) € D. Thus, in order to establish that the left boundary of A" is the segment
B=a-1 with 0<a<1+1/n we still need to show that there is no B in
(=1, a—=1) for which f has all its roots in D. To see that, let 8 move from a—1
toward — 1. When it is near a — 1, z, is outside D and all the other roots of f are in
D. As B approaches — 1, other roots might pass dD. We have seen that as they pass,
they cannot be real, thus they pass in complex conjugate pairs. Conclusion: If 8 is in
(=1, & — 1) there is always an odd number of roots outside D.

Step 3. The right boundary of A™.

L. A similar approach is used for determining the right boundary of A*, but the
situation here is a little more complicated since, as B moves to the right, the first root
that leaves D cannot be real (as we have already seen).
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Again we fix a in (0,1 +1/n) and then we move S to the right, starting from
B=a— 1. At certain values of B < 1, two roots 3; and Z%; of hit dD. We set z; = e',
where 0 < § < 7 (without loss of generality). Hence

!+ _ yeint 4 B=0,
which implies that
B=—e"(e"~a), (1)
and
1Bl = la— €'’ > la—1].
Since B> a — 1 we must have
la—1]<B=<1
and therefore
B=la—e"l. (2

In particular, the upper bound of B restricts 6 to the interval (0, m/2). Taking
arguments in (1) we get (since 8> 0)

arg(B) =2km=m+nb+ ¢, where p=arg(e’—a). (3)
Without loss of generality we can always assume that
0< <.

Notice that (1) is equivalent to (2) and (3) together. On the other hand, (1) is the
necessary and sufficient condition for a root of f to be on dD. The bounds for 6 and
¢ imply that the integer k that appears in (3) is between 1 and 1 +n /4.

The geometric picture is helpful (see Ficure 2): Consider the triangle in the
complex plane whose vertices are 0, @ and z; = ¢'’. The angle corresponding to the
vertex 0 is 6, while the exterior angle at the vertex a is ¢ (or, the angle correspond-
ing to a is 7 — ¢). In particular 6 < ¢.

a 1

zj=e“’ =t
0 ¢ 0 ¢

0<a<l l<a<l+1/n

FIGURE 2
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It follows that, given a € (0,1 + 1/n), to determine a B in (Ja — 1|, 1] for which f
has a root on ¢D, we first fix an integer in the range given above, then we find the 8
in (0, 7/2) that satisfies (3) and, finally, we obtain our B from (2). From (3) it follows
easily that bigger k’s give bigger 6’s, which, then, give bigger B’s, as can be seen from
(2). Therefore, the smallest B in (o — 1,1] for which f has a root on dD must be
obtained by setting k = 1 in (3), which then becomes

n@+¢=m, where p=arg(e'’—a). 3)

Let us call B,(a) this particular B (r here stands for “right”, since this will turn out
to be right boundary of A*, at a fixed a). If a€(0,1) such B, obviously exists
(uniquely) because, if 6 is close to 0, then ¢ is close to 0 too and, by increasing 6 we
will be able to satisfy (3') and then get our B, from (2). Butif a €[1,1 + 1/n) things
get a little trickier because, as 6 |0, then ¢ 1 7 (unless a =1, where ¢ does not have
a limit; see Ficure 2) and, thus, (3') may not have any solution 8 in (0, 7/2). To see
that this is not the case, observe that, if 6> 0 is very close to 0, then

"‘¢=E'f—1+0(02)=i%+80+0(02)="9+ 80+ 0(6%),

where 8= (a—1)"' —n > 0. Hence, the above formula implies that
n+ =m—80+0(6%),

which says that, if 0 is sufficiently small (but strictly positive), then n6+ ¢ < . By
increasing 6 we can then satisfy (3') and obtain our B,. For such a 6, because of (3),
we must have

w

0<9<n+1.

The law of the sines in the triangle with vertices 0, & and z; = ' yields

B 1 a
sinf  sing  sin(p—0)"

But, by (3'), sin ¢ = sin(n6) and sin(¢ — ) = sin[(n + 1)6]. Hence

_ sin#
A= sin(n@)’ (4)
where 6 can be computed from the formulas
_sin[(n+1)6] T
“T sin(nf) °’ 0<0<3FT ©)

Since for n > 2, after a little algebra, dB,/da can be shown to be strictly negative
(see Appendix B) for this range of 8, we have a unique B,, for any @ in (0,1 + 1/n).
Finally, as n gets bigger, the solution 6 of (3') obviously gets smaller and, thus, 8,,
obtained from (2), gets smaller too (i.e., the right boundary of A* moves to the left).
Since «€(0,1+1/n) and |a— 1| < B, <1,(3') implies that, in the limit n — oo,
B(a)=1—a, where 0< a< 1.

In the other extreme case, namely n = 1, our formulas imply that 8,(a) = 1, where
0<ax2.
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II. In order to establish that B,(a) is actually the right boundary of A*, we must
show that, if B satisfies

B.(a)<B<1, (6)

then there are roots of f lying outside D. To prove that, we just need to show that, if
for some B, one root z, is on the unit circle dD, then, by increasing B, this root
moves away from D. To make it more precise, let z;=re"® be a root of f, which, of
course, depends on B. We want to show that, if at some B we have that r(B)=
lzjl =1, then r'(B) > 0, for this particular B, which, of course, must satisfy (6).
Since z; is a root of f,
,’.n+lei(n+l)0 _ arneine + B =0,

Differentiating implicitly with respect to B and then setting r =1 we obtain

(n+1)r'e’"*o 4 i+ Dbi(n +1)9' — anr'e™® — ae™ind’ +1=0.

If we set r=1 in the first equation and then write the corresponding equations for
the real and imaginary parts, the above two equations become

cos[(n +1)6] — acos(nb) + =0, (7

sin[(n +1)0] = asin(nd), (8)
(n+1)r'cos[(n+1)6] — (n+1)8 sin[(n +1)06]

—anr'cos(nf) + anf’ sin(nf) +1=0 (9)

and
(n+1)r' sin[(n+1)8] + (n+1)6' cos[(n + 1) 6]
—anr’ sin(n@) — anb’ cos(nf) = 0. (10)
The last equation implies
0'[(n +1)cos[(n +1)8] — ancos(nb)] =r'[ansin(nd) — (n + 1)sin[(n + 1) 6]],

,_sin[(n+1)8]
b= nB—cos[(n+1)6] "’ (1)

thanks to (7) and (8). Likewise, using (7) and (8) in (9) we obtain
r'[nB—cos[(n+1)0]] + ¢’ sin[(n +1)60] =1,
which after applying (11), becomes

sin?[(n +1)6]
B—cos[(n+1)8]

r'|nB—cos[(n+1)8] — - =1. (12)

Remember that we are interested in the sign of r’. The above equation tells us that
"> 0 if and only if nB — cos[(n + 1)6]1> 0. But, by (6) and (4)

nsin 6

nﬁ>nﬂ,=W21 (13)
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(for the last inequality see Appendix A) and, therefore we have established that ' <0.
This finishes the proof of the theorem.

Remark. The polynomial f(z)=2z"*! — az"~* + B, where 1 <k <n—1, can be
treated in a similar way.

3. Concluding Remarks As we saw in the introduction, the asymptotic stability of
the equation

X1 — XX + ﬁxk—n =0

plays an important role in certain population biology models. In this work we showed
that this equation is asymptotically stable if, and only if, the point ( B, ) lies in the set
A of the Ba-plane where

(i) A is symmetric with respect to the origin, if n is even;

(i) A is symmetric with respect to the B-axis, if n is odd and, in both cases, the
upper-half A" of A (namely the part that lies in the upper half-plane a > 0) has a
simple explicit description given by the theorem in the beginning of Sec. 2.

Of course, the parameters a, 8 and n are determined from the corresponding
“real world” situation and then our criterion can give an immediate answer to the
question of whether the population under study will approach an equilibrium or not.
Typical values for @ and n are, for example, a=.8, n=4 (see [2] and our
introduction for the meaning of these numbers). Then our theorem, with the help of
Newton’s method for solving numerically transcendental equations, gives 6 = 0.4496.
Thus the corresponding equilibrium solution of the nonlinear model is locally absorb-
ing if —0.2< <0446,

Appendix A

The last inequality appearing in (13) follows immediately from the following
lemma.

LEMMA. Let € (0, m/2] and x > 1. Then
x sin 0> sin(x6).
Proof. Fix x > 1. Define
g(6) =xsin 6 —sin(x0), 6e[0,m/2],
and notice that g(0) =0 and g(6,) > 0, where 6, is any zero of g’ in [0, 7/2].

Appendix B
For a and B, given parametrically by (4) and (5) we can compute easily that

dB, _  sin[(n—1)8] — (n—1)sin 6 cos(nf) 0< 6 T
da nsin @ —cos[(n + 1) 0]sin(nf) ° <O0<aFT

or

g, _ _(n+ Dsin[(n —1)8] — (n — 1)sin[(n + 1) 6]
da (2n + 1)sin @ —sin[(2n + 1) 6]

(B1)
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In particular

91?3%— 2n+1 an 3? 0-1r/(n+1)_ Cosn+1'

The case n =1 is trivial, so let us assume that n > 2. The denominator in (B1) is
nonnegative by the lemma of Appendix A. In fact, it is easy to check that it is strictly
positive. Let N(6) be the numerator appearing in (B1), namely

N(8) =(n+ )sin[(n—1)8] — (n—1)sin[(n +1)6].
We have that N(0) =0 and
N'(6) = 2(n*—1)sin 6sin(n6) > 0.

Thus N(6) >0, for 6€(0, 7/(n + 1)), and therefore B, is a (strictly) decreasing
function of a.
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Math Bite:
A Generalization of a Curiosity that Feynman
Remembered All His Life

If a boy named Morrie Jacobs told him that the cosine of 20 degrees
multiplied by the cosine of 40 degrees multiplied by the cosine of 80
degrees equaled exactly one-eighth, he would remember that curiosity for
the rest of his life, and he would remember that he was standing in
Morrie’s father’s leather shop when he learned it [1).

Morrie Jacobs’ identity is the special case k = 3, a = 20, of the following identity
that follows by induction on k using sin2b = 2sin b cos b, with b = 2k~ 14,

k-1 . k
k i\ _ sin(2%a)
2 ]13) cos(2/a) —ina

For additional material, consult Anderson [2].
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Building Home Plate: Field of Dreams or Reality?

MICHAEL J. BRADLEY

Merrimack College
North Andover, MA 01845

In the movie Field of Dreams, Kevin Costner’s character, Ray Kinsella, considers
building a baseball park in the middle of his cornfield. “If you build it, they will
come,” encourages a voice from the past. As an assistant coach for my nine-year-old
son’s baseball team, I was interested to read in the official league rules the following
specifications for home plate:

“Home base shall be marked by a five-sided slab of whitened rubber. It
shall be a 12-inch square with two of the corners filled in so that one edge
is 17 inches long, two are 8 1/2 inches and two are 12 inches.” ([1],
p. 160)

An accompanying diagram shows the finished product:

17

81/2 81/2

FIGURE 1

Pondering these instructions, I wondered not whether we should build it, but
whether we could build it. Is such a home plate possible?

The “correct” answer is “No.” The figure implies the existence of a right isosceles
triangle with sides 12, 12 and 17. But (12,12,17) is not (quite) a Pythagorean triple:
12% + 12% = 288; 17> = 289. Thus, these specifications seem to give new meaning to a
“Field of Dreams.”
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On the other hand, if one interprets the values 12 and 17 as measured numbers,
accurate to two significant digits, then home plate can be built, since, to that degree
of accuracy, (12,12,17) is a Pythagorean triple.

We can build it! Let them come.
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1. Peter Kreutzer and Ted Kerley, Little League’s Official How-to-Play Baseball Book, Doubleday, New
York, 1990.

The Pythagorean Proposition: A Proof
by Means of Calculus

MIKE STARING

Hogeschool Katholieke Leergangen
5022 DN Tilburg, The Netherlands

E. S. Loomis, in [1], argues that there can be no trigonometric proof nor any proof
based on analytical geometry or calculus for the Pythagorean proposition because each
of these subjects “accepts the truth of geometry as established, and therefore
furnishes no new proof.” His argument seems valid in so far as functions of two (or
more) variables are involved in such a ‘proof.” Since calculus of one variable can be
developed without using the Pythagorean theorem, circular reasoning may be avoided.
The following is a proof of the proposition using calculus.

Let ABC be a triangle with its right angle at A. Keep AB fixed and let AB =b.
Denote AC by the variable x, so that BC is a function of x, f(x). See FIGURE 1. If
AC increases by an amount Ax, then BC will increase by Af. From similar triangles,

Af _CQ_CP_CA_ x

Ax CD CD_CB ™ F(x)

FIGURE 1
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But also
Af_SD _RD_AD_ x+Azr _ _x_, Ax
Ax ~CD <TD ~BD _F(x) +Af “F(®) T Flx)"

Now let Ax = 0%; we find

g _x_
de — f(x)
(Although only the case that Ax >0 has been studied here, it is easy to derive a
similar equation for Ax <0.)
Hence, f is a differentiable function of x. Solving the differential equation yields

fi(x) =x*+c,
where c is a constant. Obviously, if x =0 then f(x) =b. Hence ¢ = b?. The proof of
the Pythagorean proposition is complete.

REFERENCE

1. Elisha Scott Loomis, The Pythagorean Proposition, National Council of Teachers of Mathematics,
Washington, DC, 1968, pp. 244-245.

Update on William Wernick's
“Triangle Constructions with Three Located Points”’

LEROY F. MEYERS*
The Ohio State University
Columbus, OH 43210

William Wernick’s paper [9] contains a list of 139 problems, each of which asks for the
Euclidean construction of a triangle from triples of “located points”, i.e., points such
as vertices, feet of altitudes, centroids, etc., whose location is given. Wernick was able
to resolve nearly two-thirds of these problems, either by finding constructions or by
proving redundancy of the data. (See figures and complete list of located points
below.)

The notation below, introduced in [9], will be used in what follows for various
points associated with a triangle. (See FIGURES 1-4.)

A,B,C,0O the three vertices, and circumcenter;

M, M, MG feet of the three medians, and centroid;

H,H, H,H feet of the three altitudes, and orthocenter;
T,.T,.T.,1 feet of the three internal angle bisectors, and incenter.

*We report with regret that Professor Meyers, the author of this article, died suddenly in November,
1995. Professor Meyers had a long-standing interest in geometry, problems, and undergraduate education.
In the week he died, Professor Meyers was scheduled to speak—on topics related to this article—to a
student mathematics club at Ohio State. During the period 1975-85, he served as Associate Editor of this
MAGAZINE, including six years as Associate Problems Editor. —Ed.


http://www.jstor.org/page/info/about/policies/terms.jsp

46 MATHEMATICS MAGAZINE

But also
Af_SD _RD _AD _ «x+Ar _ _x  Ax
Ax ~CD <TD ~BD _F(x) +Af “F(®) T Flx)"

Now let Ax = 0%; we find

g _x_
de — f(x)
(Although only the case that Ax >0 has been studied here, it is easy to derive a
similar equation for Ax <0.)
Hence, f is a differentiable function of x. Solving the differential equation yields

fi(x) =x*+c,
where c is a constant. Obviously, if x =0 then f(x) =b. Hence ¢ = b?. The proof of
the Pythagorean proposition is complete.

REFERENCE

1. Elisha Scott Loomis, The Pythagorean Proposition, National Council of Teachers of Mathematics,
Washington, DC, 1968, pp. 244-245.

Update on William Wernick's
“Triangle Constructions with Three Located Points”’

LEROY F. MEYERS*
The Ohio State University
Columbus, OH 43210

William Wernick’s paper [9] contains a list of 139 problems, each of which asks for the
Euclidean construction of a triangle from triples of “located points”, i.e., points such
as vertices, feet of altitudes, centroids, etc., whose location is given. Wernick was able
to resolve nearly two-thirds of these problems, either by finding constructions or by
proving redundancy of the data. (See figures and complete list of located points
below.)

The notation below, introduced in [9], will be used in what follows for various
points associated with a triangle. (See FIGURES 1-4.)

A,B,C,0O the three vertices, and circumcenter;

M, M, MG feet of the three medians, and centroid;

H,H, H,H feet of the three altitudes, and orthocenter;
T,.T,.T.,1 feet of the three internal angle bisectors, and incenter.

*We report with regret that Professor Meyers, the author of this article, died suddenly in November,
1995. Professor Meyers had a long-standing interest in geometry, problems, and undergraduate education.
In the week he died, Professor Meyers was scheduled to speak—on topics related to this article—to a
student mathematics club at Ohio State. During the period 1975-85, he served as Associate Editor of this
MAGAZINE, including six years as Associate Problems Editor. —Ed.
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Since the appearance of Wernick’s paper more than 13 years ago, about half of the
problems left unresolved by him have been resolved, some positively but most
negatively, and this paper is a report on the new results.

Table 1 contains a listing of these recently resolved problems, numbered as in [9],
together with their resolutions. (A misprint in problem 102 is corrected.) Twenty
problems remain unresolved.

TABLE 1 For each of the 30 triples of points listed, the problem of constructing the
corresponding triangle ABC has been resolved by the author since the appearance of [9]. The
triples are numbered as in that article. The letters S, U, and L designate that the problem of
constructing a triangle from the given triple by Euchdean means is Solvable, Unsolvable, or
Locus-restricted, the last meaning that for a triangle to exist, one of the points must lie on a
locus curve determined by the other two, but is not determined completely.

2. A,M,,T, U|58. AT, T, S|80. 0,H,I U| 9. M,G,I S|114 M, T, I U
27. A,M,,I S|68. O,M, T, U|82. O,T, I S |100. M, H, T, U|115. G, H,, H, U
42. AGT, U712 0,GT,” U|87. M, M, H S |102. M., H,, H, L|120. G, H.T, U
3 Acl s|iocI ulss M oM., 006 MoH,.T U2l G HI U
56. A, H,T, U|74. O, H,, H, U|89. M, M,,T, U|107. M,, H,, 1 U|130. H, H, T, U
57. A,H,I S§|79. O,H.T, U|9%. M..G,T, U|108. M., H,T, U|13l. H,H,I §

It is an interesting challenge to verify the results shown in the table. One sample
verification is given below; the remaining verifications (and extensions!) are left to the
interested reader, who may obtain further information from the author.

Algebra, often in connection with analytic geometry, can be used to prove that
there is no Euclidean construction from certain triples of located points. All such
proofs proceed by contradiction, and depend on Gauss’s criterion for Euclidean
constructibility. The following corollary of Gauss’s theorem, quoted from [4, p. 33], is
useful (see also [3, p. 550)).
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THEOREM 1. It is impossible to construct with ruler and compasses a line whose
length is a root or the negative of a root of a cubic equation with rational coefficients
having no rational root, when the unit of length is given.

Problem 115. Given G, H,, Hy,.

Particular positions are chosen for the located points, and it is shown that they
determine a triangle for which there is no straightedge and compasses construction.
Let the located points in a rectangular coordinate system be G =(1,3), H, = (0, 1),
and H, = (0, —1). (See Ficure 5.)

g

FIGURE 5

Since £ AH,B = £ AH}, B = 90°, the points H, and H;, lie on the circle having the
segment AB as diameter and M, as center. Then M, lies on the perpendicular
bisector of the segment H,H,. Hence M, = (x,0) for some real number x. Since G is
2/3 of the way from C to M,, we have C = (3 — 2x,2). Suppose that A = (u,v) for
some real numbers v and v. Then B=2M,—A = (2x —u, —v). Since C, A, and H,
are collinear, the slopes of the lines AH, and H;,C must be equal. Thus

vr1_ 3
u 3—2x"
Similarly, collinearity of C, B, and H, yields
v+1 1

u—2x 3—-2x°
If we divide the first equation by the second and solve for u, we obtain

x+3
u= —x and then v=9g-

Since M, is the circumcenter of right triangle ABH,,, we have
x2+1=(x—u)2+02,
and so substitution with simplification yields

2x%—6x2+4x+3=0,
which has no rational root. Hence by the theorem quoted above, x is noncon-
structible. There is a triangle having the given located points, with x = —0.4311 and
the nonconstructible vertices A = (0.4311, —0.6651), B = (—1.2934,0.6651), and
C = (3.8623,2).
Readers are invited to fill in the blanks still remaining in Wernick’s problem list.
The following 20 problems are open:

71. O,H, T, 109. M,,H,T, 118. G, H, T, 127. H, H,,T, 135. H,T,, I
78. O,H, I 110. M,,H,I 119. G, H, 1 128. H, H, I 136. H,T,T,

s Lao

8l. 0,1, T, 11l M,T,T, 122 G,T, T, 132 H,T,T, 137. H,T,I

a *a> > La>

90. M, M,,I 113. M,,T,,T, 123. G,T,,I 134 H, T, T, 138 T,T,T,
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Note. Not much seems to have been published on the construction of triangles
using located points. Most works on geometric constructions, such as the excellent [7],
treat triangle construction problems only from the point of view of “parts”, such as
sides, angles, medians, altitudes, and the like. A systematic list of “parts” problems,
together with solutions to some of them, can be found in [8], and a smaller systematic
list, together with solutions, is [5]; the corresponding unsolvable “parts” problems are
treated in [6]. Recent “challenge” columns are [1, 2].

Acknowledgment. The author thanks William Wernick for his encouragement during the work leading
to this paper.
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Ceva’s and Menelaus’ Theorems and Their
Converses via Centroids

MURRAY S. KLAMKIN
University of Alberta
Edmonton, Alberta, Canada T6G 2G1

SIDNEY H. KUNG

Jacksonville University
Jacksonville, FL 32211

It appears that present-day students do not know much about applications of centroids
to geometry. Perhaps this note may help rectify this situation. For further applications,
see [1], [2], and [4].

Ceva’s theorem states that if AD, BE, and CF are three concurrent cevians of a
triangle ABC as in Ficure 1, then

(2e)( 22 )(75) -2 0
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Let BF/FA=1/m and AE/EC =n/l. We now place masses I, m, n, at A, B, and
C, respectively. We can replace masses | and m by one mass [ +m at F (since F is
their centroid). Hence the centroid of all the masses lies on line CF. Similarly, the
centroid lies on line BE and thus must be at the intersection of BE and CF. It now
follows that the centroid of masses m and n (in Ficure 1) must be at D so that
CD/DB =m/n giving (1).

Converse (useful in proving concurrency results):

If D, E, F are points on the sides BC, CA, and AB of a triangle ABC such that

(oe) (2 77) -

then AD, BE, and CF are concurrent. As before, referring to Ficure 1, the centroid
of the three masses must lie on each of the lines AD, BE, and CF so that these lines
must be concurrent.

Menelaus’ theorem states that if X, Y, Z are collinear points on the sides of a
triangle ABC as in Ficure 2, then

)z )(3) = -1 ®

Let AZ/ZB =m/l and BX/XC = —n/m. We now place masses [ +m at Z, | + n at
Y and n —m at X as in Ficure 3.

C
FIGURE 2
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n—m

FIGURE 3

The centroid of the three sets of masses lies on the line ZYX. We can replace the
masses [ +m at Z by masses [ at A and m at B. Now we can replace the masses m
at B and n —m at X by n at C as in Ficure 4. Thus the centroid of the masses must
also lie on line AC and consequently must be at Y. Hence, CY/YA =1/n, which
gives (2).

FIGURE 4

Converse (useful in proving collinearity results):

If points X, Y, Z are taken on the sides of ABC as in Ficure 2 such that
AZ/ZB=m/l, BX/XC = —n/m, and CY/YA =1/n, then X, Y, Z are collinear. We
proceed as before and obtain Ficure 4. Since here CY/YA =1/n, it follows that Y is
the centroid of all the masses. This implies that X, Y, Z are collinear.

In [4], a simultaneous generalization is given of the theorems of Ceva and
Menelaus. It would be of interest to give a centroid proof of this result.
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A Short Solution of a Problem
in Combinatorial Geometry

MARC NOY

Dept. Matematica Aplicada Il
Universitat Politecnica de Catalunya
08028 Barcelona, Spain

The solution of the classical problem: Into how many regions is a circle divided if n
points on its circumference are joined by chords with no three concurrent? is well

known to be
n n
() +(5) 2

and can be found in many references. It appears in [2] as problem 47, although the
two solutions provided are quite involved. Because the first values of n yield 1, 2, 4, 8,
16, and the next one 31, it appears in [1] as one of several examples of patterns that
seem to appear in a sequence of numbers, but turn out not to be correct. The solution

there considers the circle as a planar map with V.=n +|7 | vertices—the original n
points and an intersection of chords for each choice of 4 of those points. There are 4
ends of edges at each intersection and n + 1 at each point, so that E = gn(n + 1) +
2(2) and Euler’s formula R=E —V + 1 gives the result.

In this note we offer a direct combinatorial proof without any algebraic calculation.
Imagine that we draw the chords one after another, keeping count of the number of
regions created each time. Starting with one region, the whole circle, the first chord
creates one more region. Any subsequent chord will create one new region, plus as
many more as the number of intersections it produces with the chords previously

FIGURE: Adding the thick chord creates 4 new regions.
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drawn (see Ficure). This number will of course depend on the particular chord
selected but at the end there will be one new region for every chord and one for every

intersection. The number of chords is (g) and the number of intersections is (2) as

before. Hence the number of regions is 1 + g + (2)
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On the Order of a Product in a Finite
Abelian Group

DIETER JUNGNICKEL
Universitdt Augsburg
D-86135 Augsburg, F.R. Germany

The following result from elementary group theory is included in virtually every
course in abstract algebra:

LEMMA 1. Let a and b be two elements of a finite abelian group G with orders m
and n, respectively. If m and n are co-prime, then the product ab has order mn.

Lemma 1 can be used to find elements of increasingly larger order in G. This has
many interesting applications, both theoretic and algorithmic. One usually applies
Lemma 1 to show that G is cyclic if, and only if, its exponent agrees with its order;
this result in turn is used to show that a finite subgroup of the multiplicative group of
a field is cyclic. (See, e.g., Jacobson [1, Theorems 1.4 and 2.18] or van der Waerden
[5, §§42 and 43].) Lemma 1 is also the basis of the standard algorithm (due to Gauss)
for determining primitive elements for finite fields (i.e., generators for the multiplica-
tive groups) and then primitive polynomials, see e.g. Jungnickel [3, §2.5]. These are
important tasks if one actually wants to perform arithmetic in finite fields, which in
turn is fundamental for applications, e.g. in cryptography. See [3] (and the references
cited there) for more information on this topic.

In some of my algebra classes, students asked the quite natural question: What
happens in the situation of Lemma 1 if one drops the hypothesis that m and n are
co-prime.* Trivially, (ab)*™™ ™ =1, so that the order of ab satisfies

o(ab) |lem(m,n). (1)
Usually, some student suggests that one should actually have equality in (1). Though

this might seem a reasonable conjecture, it is not difficult to find counterexamples.
Here is a simple series of such examples.

*I do not know of any textbook treating this question. Weak versions of some of the results below
(Le., Corollary 1, the special case f=d of Lemma 3 and the corresponding construction) were already
obtained in [2].
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Example 1 Let x generate a cyclic group of order 2pg, where p and q are distinct
odd primes, and put ¢ ==x7 and b :=x". Then we have m =2p and n =2gq, hence
lem(m, n) = 2pq. But ab =x?*9 has order at most (in fact, exactly) pq, since p +¢
is even.

If one examines Example 1 more closely, one realizes that the groups A and B
generated by a and b, respectively, intersect in a subgroup of order 2. Might this be
the reason why the order of ab differs from lcm(a, b) by a factor of 2P As we shall see
in the following example, the situation is not quite that simple. (This example can
actually be generalized considerably, cf. Theorem 2 below.) Nevertheless, the size of
the intersection of A and B indeed plays an important role, as Lemma 2 and
Theorem 1 below will indicate.

Example 2 Choose three distinct primes p, ¢, r and assume p <q <r. Let G be a
cyclic group of order pgr, generated by the element g, and put a ==g9 and b = g?.
Then m =pr, n=qr and A N B has order r; here ab =gP*? has order pgr (since
pqr is co-prime with p + ¢). Now select the smallest positive integer x for which
g +xp =0 (mod r) and replace b by b’ := g*P. Note that

g+xp<q+(r—1)p<rg;

thus gr cannot divide ¢ +xp, and therefore ¢ cannot divide x. Hence b’ also has
order n, but now ab’ has order pq.

LEMMA 2. Let a and b be two elements of a finite abelian group G with orders m
and n, respectively, and put d = ged(m, n). Denote the subgroups of G generated by
a and b by A and B, respectively, and assume that A N B has order s (where s divides
d). Then the order of the product ab satisfies the condition

mn mn

- lo(ab) | I = lem(m, n). (2)

Proof. Write k == o(ab). As noted in (1), k divides lcm(m, n). Now observe that
(ab)* =1 implies

a*=b*=ceANB. (3)

By hypothesis, A N B is a cyclic group of order s. Since the unique subgroup of A of
order s is generated by a™/*, we have ¢ = a*™/* for some positive integer x. In view
of (3) this implies

k Ex% (mod m),

and hence m/s divides k. A similar argument (applied to B) shows that n /s also
divides k, and therefore lem(m /s, n/s) divides k. Using ged(m/s, n/s)=d/s, one
sees that lem(m /s, n/s) = mn /ds.

COROLLARY 1. Let a and b be two elements of a finite abelian group G with orders
m and n, respectively, and put d = ged(m,n). Then the order of the product ab
satisfies the condition

mn

=z lo(ab)| I =lem(m, n). (4)

As we will see next, not every integer allowed by the preceding conditions can
actually occur as the order of the product ab for a suitable choice of a and b. In the
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situation of Lemma 2, we have o(ab) =mn/df for some divisor f of s. We now
obtain a further condition on f.

LEMMA 3. Under the assumptions of Lemma 2, write o(ab) =mn /df for some
divisor f of s. Then f satisfies the condition

god(f, m/d) = ged(f,n/d) = 1. )

Proof. We analyze the situation encountered in the proof of Lemma 2 more closely
(using the hypothesis k = mn/df) and claim that the element ¢ defined in (3) has

order f. To see this, write ¢’ = o(c) and note first
of=gkf=gmn/d = (am)"/d =1,

so that ¢’ divides f. On the other hand, ¢ actually belongs to the unique subgroup of
order ¢’ of AN B, and the same argument as in the proof of Lemma 2 (now applied
to ¢ instead of s) shows that lem(m/e’, n/e') =mn /de’ divides k = mn /df. There-
fore f has to divide ¢, and we indeed obtain ¢’ = f. But the elements of A of order f
are precisely the elements of the form a*™/f for some positive integer x that is
co-prime with f. Hence we have

c=a*=a*"/f withged(x,f)=1,

and thus mn/df =xm/f (modm). This implies n/d=x (mod f), and therefore
indeed ged(n/d, f) = 1. Similarly, we also obtain ged(m/d, f) = 1.

We can now give the following improved version of Lemma 2.

THEOREM 1. Let a and b be two elements of a finite abelian group G with orders m
and n, respectively, and put d = gcd(m, n). Denote the subgroups of G generated by
a and b by A and B, respectively, and assume that A N B has order s (where s divides
d). Let e be the largest divisor of s satisfying condition (5) above. Then the order of
the product ab satisfies

mn mn
- lo(ab) | 77, (6)
where € =1 if e is odd and & =2 otherwise.

Proof. By Lemma 2, o(ab) =mn /df for some divisor f of s. Since f has to satisfy
condition (5), one immediately concludes that o(ab) must be a multiple of mn /de,
where e is the largest divisor satisfying condition (5). Regarding the upper bound in
(6), we already know that o(ab) divides mn/d. Now assume that ¢ is even; then s
and mn /d are likewise even. Since e satisfies condition (5), m/d and n/d are odd.
So @™"/24 =pm/24 j5 the unique involution in A N B. This implies (ab)™ /24 = 1,
proving the assertion.

An algorithm for determining the integer e defined in Theorem 1 can be found in
Liineburg [4, Ch. IV]. We will soon see that Theorem 1 is best possible (for every
choice of m, n and s): Both the lower and the upper bound can always be realized.
To this purpose we require the following simple auxiliary result that shows that every
invertible residue modulo m can be “lifted” to an invertible residue modulo n for an
arbitrary multiple n of m.

LEMMA 4. Let m be a positive integer, let n be any multiple of m, and let a be an
arbitrary integer that is invertible modulo m. Then there exists an integer B that is
invertible modulo n and satisfies o= B (mod m).
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Proof. It clearly suffices to consider the case where n =mp for some prime p. By
hypothesis, gcd(a, m) = 1; we need to determine an integer B with ged( B, mp) =1
and a =B (mod m). If p divides m or if p does not divide a, we may simply take
B = a. Thus assume that p divides a, but not m. Then we can choose B:= a +m.

THEOREM 2. Let m, n and s be arbitrary positive integers for which s divides
both m and n. Then there exists a finite abelian group G with cyclic subgroups A and
B.of orders m and n, respectively. AN B is a group of sizes and the generators a, d
for Aand b, b’ for B satisfy

o(ab) = %g and o(d'b')= %z%, (M

where d, e and & are defined as in Theorem 1.

Proof. Let G be the finite abelian group generated by two elements x and y of
order m and n, respectively, satisfying the relation x™/* =y"/* =:c. (For an explicit
construction of this group, see the remark following this proof.) Let A and B be the
subgroups of G generated by x and y, respectively. Then the generators of A are
precisely the elements of the form a:=x% where a is a positive integer satisfying
ged(a, m) = 1; similarly, the generators of B are precisely the elements of the form
b ==y P, where B is a positive integer satisfying gcd( 8, n) = 1. By Theorem 1, mn /de
divides o(ab) for every choice of a and B. We first want to select a and B in such a
way that equality holds. We compute

mn/de m /ey @n/d n/e\Bm/d s/ex(an+Bm)/d
(ab)™"/"" = (xm/) 0 (yn /)" = (e07) : (8)

By hypothesis, ged(e, m/d) = ged(e, n/d) = 1. Thus we can choose positive integers
o' and B’ with
a’—Z— =1(mode) and ﬂ’%z- = —1(mode).
Since e is a common divisor of m and n, Lemma 4 guarantees the existence of
positive integers a and B satisfying
a=a' (mode), B=p' (mode) and ged(a,m)=ged(B,n)=1.
With this choice of a and B, we have
(an+Bm)/d=(a'n+p'm)/d=0(mode),

and thus (8) yields the desired conclusion (ab)™"/? =1, since ¢*/¢ has order e.
Finally, generators @' and b’ satisfying o(a'b’) =mn/de can be determined in an
analogous way by selecting a’ and B’ with

,n

a'g EB’% =1 (mode).
One then obtains
(d/b/)mn/de — (cs/e)(“""'ﬁm)/d _ (cs/e)z‘

This shows o(a'b’) = (mn /de)- o(c*/ ), which easily gives the assertion.

We remark that the group G used in the proof of Theorem 2 is, of course, uniquely
determined by the properties required there. An explicit construction can be given as
follows. Let v and w be generators for cyclic groups of orders m and n, respectively,
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put H:=(v) X {(w), and note that U := {(v™/*,w"/*)) is a subgroup of order s of
H. Now define

G=H/U, x=(v,1)U and y= (1,0 ")U.

Then x and y generate groups of orders m and n, respectively, which intersect in a
subgroup of order s (generated by x™/* =y"/* =: ¢), since one has

xm/s(y—l)n/s — (Um/s, 1)U~(l,w"/3)U= (Um/s’wn/s)U= U.
As a consequence of Theorem 2, we obtain the following result, which gives a
complete answer to our original question for all choices of m and n.

THEOREM 3. Let m and n be arbitrary positive integers, put d = ged(m, n), and let
k be any positive integer satisfying

Tk T (%)

where f is the largest divisor of d for which one has

ged(f,m/d) = ged( f,n/d) = 1. (10)

Then there exist a finite abelian group G and elements a and b of G with orders m and
n, respectively, such that o(ab) = k.

Proof. Note that k =mn /ds for some divisor s of f, and apply Theorem 2 with this
choice of s. Because of condition (10), one has ¢ =s, and thus the first case of (7)
gives the assertion.
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algorithm for accomplishing the following. He often records the musical numbers
from a compact disk (CD) onto a two-sided cassette tape. He wondered if there were
a way he could divide the musical numbers into two subcollections, one for side A
and one for side B, so that the difference in the times it took to play each side was as
small as possible. He would really like the playing times to be equal, but recognized
that would often not be possible.

This challenge led us to an easily understood integer-programming formulation of
the problem. I believe that this problem, which also appears in other contexts, is a
natural one for introducing some basic mathematical programming concepts to
mathematics students.

2. Variations on a theme The tape recording problem and various equivalent
statements are as follows:

(0) Given N songs with the playing time for the ith song denoted by t,, divide the
songs into two sets A and B such that the total playing time for the songs in set
A and the total playing time for the songs in set B are as close as possible.

(1) Given a set of N > 2 positive numbers n,, divide them into two nonempty subsets
A and B such that the absolute difference between the sums of the numbers in
each set is minimized.

(2) Given two similar machines M1 and M2, and N tasks such that the ith task can
be processed on either M1 or M2 in the same time ¢, divide the tasks between
the two machines and let A = Lt; (for tasks assigned to M1) and let B = Lt, (for
tasks assigned to M2) so that if the machines start processing the tasks at the
same time and continue without any delays, then all the tasks are finished in the
minimum amount of time.

(3) Given N packages with weights w;, divide the packages between two delivery
trucks so that the total weight A on the first truck is as close as possible to the
total weight B on the second truck.

Versions (0), (1), and (3) are basically problems in combinatorics and optimization,
while version (2) is a well-studied optimization problem in scheduling [1,2,3]. Other
statements of the problem include the division of typing tasks between equally
proficient typists to minimize the time for completing all the tasks, the scheduling of
jobs on computers, or the scheduling of jobs on copying machines [1,3,4]. It is clear
that versions (0), (1), and (3) are equivalent. Their equivalence to (2) is seen by noting
that since A + B is fixed, and since we want to minimize the larger of A and B, we
must have A and B as close as possible.

3. Finding a tune to play There are no known efficient (polynomial time) algo-
rithms to solve these equivalent problems. The problems are NP-hard, and known
methods for finding general solutions to such problems may blow up exponentially,
[3,4,5]. We first discuss solving the problem in terms of version (1).

Various heuristic algorithms can be devised to solve the problem, with the simplest
being a greedy-type algorithm that can be described as follows.

Largest Processing-Time (LPT) Algorithm Order the numbers in decreasing
order of their size so that n, > ny > -+ > ny. Let S(A) be the sum of the numbers in
subset A and S(B) the sum of the numbers in subset B, with these numbers updated
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as numbers are placed into the subsets. We start with S(A) = S(B) =0. Place n, in
A and n, in B. The next number is placed into the subset that has the smallest sum,
with ties broken arbitrarily. The process is repeated until all numbers are in a subset.

The measure of success of the algorithm is the difference of the final sums, that is,
D =|S(A) — S(B)|. The best D can be is 0 if Xn, is even or 1 if this sum is odd. For
example, if the numbers were 8,7,6,5,4,3,2,1, we would have A =(8,5,4,1) and
B=(7,6,3,2), with S(A)=18, S(B)=18, and D=0. The LPT algorithm (also
termed the decreasing-time-list algorithm) was first developed and applied to schedul-
ing problems by Graham [3]. He showed that the algorithm, as applied here for two
subsets, will produce an S(A) and an S(B) such that the larger of the two will never
be more than 17% from the value it would have in an optimal placement. For the
numbers 11,10,9,6,4, the algorithm produces A =(11,6,4), B=(10,9), with
S(A)=21, S(B)=19, and D =2. The optimal placements are A=(11,9), B=
(10,6, 4), with S(A)=S(B)=20, D=0 [1, p. 75].

For N large, determining the optimal solution by enumerating all possible combi-
nations is a rather difficult and tedious job. Not all combinations need to be evaluated,
however. If Ln; is odd, then only the first (2! — 1) combinations need to be

evaluated due to the symmetry of the combinatorial terms. (The combinations (1(\)7)

and (Z) are ignored and we need half of the other combinations as ( z ) = (sz m).)
N

If N is even, 1/2 N/2

usually have about 10 selections, one could use a computer to evaluate all combina-
tions.

additional combinations must be evaluated. For CDs, which

4. The musical mathematical-programming formulation We next discuss the
problem in terms of the song-recording version Problem (0) and develop an integer-
programming formulation that will be used to solve some numerical examples.

Mathematical Model (Integer-Programming Model)
Data

N = the total number of songs to be recorded

¢, = the time in seconds to play song i

Variables

x; =1 if song i is recorded on side A

0 if song i is not recorded on side A
y; = 1 if song i is recorded on side B

0 if song i is not recorded on side B

X = Lt;x; = Total time on side A
Y = Lt y, = Total time on side B

D = X — Y = Difference between the total times on side A and
side B
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D = D, — D, = The representation of the difference variable
as the difference of two nonnegative variables;
D=D,if X>Y; D= —D, if X<Y;

D=0if X=Y.
Constraints
1) X=ZXL¢x;
@ v= Lt;y,

B) X-Y=D,-D,

@ x,+y,=1G=1,...,N)
(5) x,=0or1l

6) y;=0o0r1

() D,=0, D,=0

Objective Function

Minimize D, + D,

Constraints (1) and (2) are definitional constraints that define the total time on side A
by X and the total time on side B by Y. These constraints and variables are not
essential to the formulation, but are included as they explicitly return the total times
for the songs on each side. Constraint (3) measures the absolute difference between X
and Y by the difference between the non-negative variables D, and D,; this
eliminates the need to use the unrestricted variable D. Constraints (4), (5), and (6)
force each song to be on either side A or side B. Constraints (7) restrict the
difference variables to be nonnegative. The objective function seeks to minimize the
sum of the difference variables. With this objective function, the optimal solution
cannot have both D, and D, positive (otherwise you can show that the solution is not
optimal). Both D, and D, can be zero, however.

5. A Stan Getz example Consider the following eight songs contained on the CD
disc Apasionado by Stan Getz (A&M Records).

1. Apasionado 8:05 = 485 seconds (x, or y;)
2. Coba 7:05 = 425 seconds (x, or y,)
3. Waltz for Stan ~ 6:05 = 365 seconds (x, or y,)
4. Espanola 4:15 = 255 seconds (x, or y,)
5. Madrugada 5:26 = 326 seconds (x5 or ys)
6. Amorous Cat 4:58 = 298 seconds (xg or y,)
7. Midnight Ride  8:58 = 538 seconds (x, or y,)
8. Lonely Lady 5:39 = 339 seconds (x4 or yg)
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Integer-Programming Model
Minimize D, + D,
subject to

X — 485x, — 425x, — 365x, — 255x, — 326x5 — 298x5 — 538x; — 339x3 =0
Y — 485y, — 425y, — 365y, — 255y, — 3265 — 298y, — 538y, — 339y, =0
X-Y-D,+Dy,=0

x;+y;=1 fori=12,...,8

x;=0orl
y,=0orl
D, 20, D, =20

The optimal solution using a combined simplex algorithm and branch-and-bound
procedure as implemented in the LINDO integer-programming software [6] is the
following:

Side A—Time Side B—Time
x,=1 425 y, =1 485
x,=1 255 y;=1 365
xg=1 298 ys=1 326
x,=1 538 ys=1 339
TOTAL TIME: 1516 1515 (D, - Dy)=1

It is interesting to note that the cassette version of the CD put out by A&M Records
has songs 1, 2, 3, 4 on side A for a total time of 1530, and songs 5, 6, 7, 8 on side B
for a total time of 1501, with a difference of 29 seconds! The largest-processing-time
algorithm would put songs 3, 4, 7, 8 with time 1497 on side A and songs 1, 2, 5, 6
with time 1534 on side B for a difference of 37 seconds.

The recording company’s ordering of the songs on a CD or tape may be due to
artistic considerations or one may just want to have specific songs together. It is a
simple matter, for example, to force Apasionado (song 1) and Midnight Ride (song 7)
to be on the same side (and to follow one another) by setting y, = 0 and y, = 0 in the
integer-programming formulation.

Acknowledgement. We wish to thank the anonymous referees for their constructive comments.
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Professor Fogelfroe

Professor F. Fogelfroe is Professor of Mathematics at ValuPak™ University, in

Margo’s Forehead, Minnesota.

(/2+1/84+1/8+..

= 0.94

In an effort to win a 6% raise for himself and his colleagues, Professor
Fogelfroe carries through on his threat to reduce the accuracy of his

lectures by a like amount.

—KEeNNETH KAMINSKY
AucsBurc COLLEGE
MinneapoLis, MN 55454

Chanson Sans Paroles

17°=4913

1973 =17 64 53 73

1997° =7 964 053 973

19997° =7 9964 0053 9973

199997°% = 7 99964 00053 99973
19999973 = 7 999964 000053 999973
Same also for 18,198, 1998, etc.

4+9+1+3=17
7+64+53+73=197

7 + 964 + 053 + 973 = 1997

7 + 9964 + 0053 + 9973 = 19997

7 + 99964 + 00053 + 99973 = 199997

7 + 999964 + 000053 + 999973 = 1999997

—1. A. Saxmar

Puysics DEPARTMENT
University oF SoutH FLORIDA
Tawmra, FL 33620
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—JamEs O. CHiLaka
Long IsLanp UNIVERsITY

BrooxkviLLE, NY 11548



http://www.jstor.org/page/info/about/policies/terms.jsp

64 MATHEMATICS MAGAZINE

Proof without Words: Five Means—and Their Means

a+b
2

Arithmetic: am = AM(a, b) =

. a® +b?
Contraharmonic: cm = CM(a, b) = =

Geometric: gm = GM(a, b) = Vab

Harmonic: hm = HM(a, b) = f__c:by

a’ + b?
Root mean square: rms = RMS(a, b) = B
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' ! ' ! ' : ' > x
a hm gm am ms cm b N
AM
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(s
2ab a+b a? + b2 a2+ b2
a<—p < Vab < 5 < 5 < o <b
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2 ab a+b a+b?2 a2 +b2
I. 0<a<b = a<m<JE< 5 <V 5 <—p- <b.

II. hm+cm=a+b = AM(hm,cm)=am
II. hm-ram=a'b = GM(hm,am)=gm
2,72
a ;b = GM(am,cm) = rms

o, (a+b)

V. gm?+rms’= 5 = RMS(gm, rms) = am

IV. am-cm=

—RocER B. NELSEN
Lewis AND CrArk COLLEGE
Porrranp, OR 97219

Corrected Figure for Position Graphs for Pong
Hau K’i and Mu Torere

In Position Graphs for Pong Hau K’i and Mu Torere, by Philip D. Straffin, Jr., in the De-
cember 1995 issue of this MAGAZINE, the edge labels on the graph in FIGURE 5, page 384,
were inadvertently omitted. The correct figure appears below.

We regret the error. - Ed.
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PROBLEMS

GEORGE T. GILBERT, editor

Texas Christian University

ZE-LI DOU, KEN RICHARDSON, and SUSAN G. STAPLES, assistant editors

Texas Christian University

Proposals

To be considered for publication, solutions
should be received by July 1, 1996

1489. Proposed by David Callan, University of Wisconsin, Madison, Wisconsin.

For what integers k is

mlnllem{1,2,...,m+n +k}
(m+n+k)!

an integer for all nonnegative integers m and n such that m+n+k>0 (lem
denoting the least common multiple)?

1490. Proposed by Evgenii S. Freidkin, Rutgers—The State University of New
Jersey, Piscataway, New Jersey.

A mouse with maximum speed v,, sits at the center of a regular pentagon. At each
vertex of the pentagon is a cat with maximum speed v,. If the cats must remain on the
boundary of the pentagon, find a necessary and sufficient condition which guarantees
the mouse can escape from the pentagon. (Assume that the animals are points and
that changes in velocity may be instantaneous.)

1491. Proposed by Wu Wei Chao, He Nan Normal University, Xin Xiang City, He
Nan Province, China.

Find all functions f: R — R such that
@ flx+f(y)+yf(x) =y +f(x) +xf(y) for all x, y, in R;
G {f(x)/x: x €R, x # 0} is a finite set.

We invite readers to submit problems believed to be new and appealing to students and teachers of
advanced undergraduate mathematics. Proposals must, in general, be accompanied by solutions and by any
bibliographical information that will assist the editors and referees. A problem submitted as a Quickie
should have an unexpected, succinct solution.

Solutions should be written in a style appropriate to this MAGAZINE. Each solution should begin on a
separate sheet containing the solver’s name and full address.

Solutions and new proposals should be mailed to George T. Gilbert, Problems Editor, Department of
Mathematics, Box 32903, Texas Christian University, Fort Worth, TX 76129, or mailed electronically
(ideally as a LATEX file) to g.gilbert@tcu.edu. Readers who use e-mail should also provide an e-mail
address.
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1492. Proposed by Michael Golomb, Purdue University, West Lafayette, Indiana.

Derive the Laplace transform of the function (2sin x — sin2x)/x?; i.e. for Re s > 0
evaluate the integral

f 5% 2sin x -; sin2x de.
0 x
1493. Proposed by Jiro Fukuta, Gifu-ken, Japan.

In AABC, let L, and Ly, M, and M,, N, and N, be distinct points on the sides
BC,CA, AB, respectively, such that
BL, CL, CM, AM, AN, BN,

LC I,B MA M,C NB N,A

Let PLle, QMle, RNINZ’ SMZNI’ TNle, aIld UL2M1 be tlle equilateral
triangles built outwards on the sides of the hexagon L,L, M, M, N,N,.

<l1.

(i) Prove that the segments PS, QT, and RU have equal lengths, and the lines PS,
QT, and RU intersect at 120° angles and are concurrent.

G) If Gy, Gy, Gy, Gy, Gs, and Gy are the centroids of triangles QSR, SRT, RTP,
TPU, PUQ, and UQS, respectively, prove that G,G,G3G,G5G is a regular
hexagon whose centroid coincides with that of A ABC.

Quickies

Answers to the Quickies are on page 73.

Q844. Proposed by Erwin Just (Emeritus) and Norman Schaumberger (Emeritus),
Bronx Community College, New York, New York.

Let (a, b, ¢) be a Pythagorean triple.
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(i) Prove that there exists an integer ¢ such that a¢, bt, and ct are the lengths of the
sides of a right triangle in the plane with all three vertices at lattice points and
with neither leg parallel to an axis.

(i) If (a, b, c) is primitive, is it possible that ¢ = 1?

Q845. Proposed by William P. Wardlaw, U.S. Naval Academy, Annapolis, Mary-
land.

Let A be a square matrix, over a field, for which there exist positive integers m and
n such that A™ =1+ A". Show that det(I + A +2+ - +A™ ') =0.

Q846. Proposed by John P. Hoyt, Lancaster, Pennsylvania.
Show that cos(m/7)- cos(2m/7) - cos(3w/7) = 1/8.

Solutions

Rational Solutions to an Exponential Equation February 1995
1464. Proposed by Bill Correll, Jr., student, Denison University, Granville, Ohio.
Find all positive rational numbers r # 1 such that r!/("~" s rational.

Solution by Achilleas Sinefakopoulos, student, University of Athens, Greece.
The set of solutions is {1 + 1/m: m € Z, m # 0,— 1}. We first tackle the case r > 1.
Let r=1+n/m, where n and m are relatively prime positive integers. If

P 2 ( m+n )m/n
m

is rational, then there exist relatively prime positive integers @ and b such that
m+n=a" and m=b". If n> 1, then by the mean value theorem

n=a"—b">nb"'(a—b) =n,

an obvious contradiction. This forces n=1, and r=1+1/m, for m=1,2,3,...,
which is easily seen to be a solution. The case 0 < r <1 is handled similarly, yielding
solutions of the form r=1—1/m, for m=2,3,... .

Comments. Peter Lindstrom notes that s =r!/""1 implies s"=rs. In this form,
the equation is Problem 127 in The Two-Year College Mathematics Journal 9 (1978),
297.
Juan-Bosco Romero Mafquez refers us to problem 1688 in Crux Mathematicorum 18
(1992), 279-280, where the equation appears in the form r log s = log(rs). Robin
Chapman observes that substituting y =rx into the well-known equation xY =y*
yields x = r!/(r=D,

Also solved by Brian D. Beasley, Kenneth L. Bernstein, David M. Bloom, Stan Byrd, Robin Chapman

(U.K), Shawn Godin (Canada), Gerald A. Heuer, Dragan Jankovié, D. Kipp Johnson, Raymond Lai,
Kee-Wai Lau (Hong Kong), Peter A. Lindstrom, O. P. Lossers (The Netherlands), Juan-Bosco Romero
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Martquez (Spain), Mark McKinzie, Stephen Noltie, Allan Pedersen (Denmark), John F. Putz, Fary Sami
and Reza Akhlaghi, David Stone, Monte ]. Zerger, and the proposer. There were three incomplete and two
incorrect solutions.

Two-Colorings of the Plane February 1995
1465. Proposed by Stephen W. Knox, University of Illinois, Urbana, Illinois.

It is a well-known theorem that given any coloring of the plane by two colors, there
exists an equilateral triangle with monochromatic vertices. As a generalization, show
that given any two-coloring of the plane and any triangle T, there exists a triangle
similar to T with monochromatic vertices.

L. Solution by Roger B. Eggleton, Illinois State University, Normal, Illinois.

Denote the vertices of T, which may be degenerate, by P, Q, and R. Let r denote
the ratio of the length of the median from R to the length of PQ. For any positive s
we claim there exists a monochromatic triangle similar to T with ratio of similitude in
the set {s,2s, rs,2rs}. To see this, we may assume PQ =1. Choosing appropriate
vertices from any equilateral triangle of side 2s, let {A, B} be a monochromatic pair
with AB =2s and M the midpoint of AB. Consider a parallelogram ACBD with
A ABC ~ ABAD ~ APQR.

Is

If C or D is the same color as A and B, then A ABC or ABAD is a monochro-
matic triangle similar to T, with ratio of similitude 2s. Otherwise, either { A, B, M} or
{C, D, M} is a monochromatic triple. Thus, there exists a monochromatic triple
{E,F, M} with EF =2s or 2rs and M the midpoint of EF. Choose G such that
AEFG ~ APQR and let H and I be the midpoints of EG and FG, respectively. If,
G, H, or I has the same color as {E, F, M}, we have a monochromatic triangle similar
to T with ratio of similitude in the set {s, 2s, rs, 2rs}. If not, AGHI is monochromatic
and similar to T, with ratio of similitude s or rs.

II. Solution by Thomas Leong, student, City College of CUNY, New York, New
York.

We show more generally that the result holds for any N-coloring of the plane.
Denote the vertices of a triangle similar to T by the vectors 0, v;, and v,. Let the
“triangular lattice” I, (u, v, w) be defined by

L(a,v,w)={u+iv+jw:i,j€Z,0<i,0<j,i+j<n}.
We apply van der Waerden’s theorem:

For all positive integers k and r, there exists an integer W(k, r) so that, if the set
of integers {1,2,...,W(k,r)} is partitioned into r classes, then at least one class
contains a k-term arithmetic progression.
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Define integers Wy, recursively by W, =1, Wy, = W(Wy + 2, N + 1) — 1. We shall
show by induction on N that if I'WN(O, vi,Vy) is N-colored, then it contains a
monochromatic triangle similar to T. The case N = 1 is clear. Assume the claim for N
and consider an N + 1-coloring of the plane. Applying van der Waerden’s theorem to
the set {1,2,..., Wy, + 1}, it follows that the “base row” of FWN+1(0, v}, Vy) contains
a monochromatic set of the form

B={(a+kd):k=0,1,...,Wy +1}.
The sublattice with B as its base row is the union of B and
Ty, =Ty, (av; + dv,y, dvy, dvy).

If any member of Ty, has the same color as B, we are done. If not, we apply the
inductive hypothesis to I'y, which is simply a translation and dilation of Ty, (0,vy,v,).

Comments. Eggleton also proves by reasoning similar to that of the first solution that
there is a monochromatic triangle similar to T with ratio of similitude in the set
{s,2s,3s,4s, 65s}.

Also solved by Kenneth L. Bernstein, Robin Chapman (U.K.), Jerrold W. Grossman, Nick Lord

(England), O. P. Lossers (The Netherlands), Eric Fabian Hernandez Martinez (Mexico), Achilleas
Sinefakopoulos (student, Greece), Saul Stahl, and the proposer.

Existence of Two Subsets with Equal Sums February 1995

1466. Proposed by David M. Bloom, Brooklyn College of CUNY, Brooklyn, New
York.

Let m and n be positive integers. If x,,..., x,, are positive integers whose average
is less than n + 1 and if y,,..., y, are positive integers whose average is less than
m + 1, prove that some sum of one or more x’s equals some sum of one or more y’s.
(This is a strengthening of Putnam problem A-4, 1993; see this MAGAZINE, April 1994,
156-157.)

Solution by Robin Chapman, University of Exeter, Exeter, U.K.
For 0 <j<m and 0 <k <n define

M\

$j=
i

k
v and ty= ¥y,
1 i=1

If s,=t, we are done, so assume by symmetry that s, >t,. Define the set

A={(j,k): 0 <j <m, 0 <k <n}. This set has m(n + 1) > s,, elements, and so, by the

pigeonhole principle, there exist distinct elements (j, k) and (j', k') of A with
s;+t=s; +t, (mods,,),

or, equivalently,

Sj - Sjl = tk' - tk (mod Sm).

We may assume that k' > k. Since [s; —sj| <s,, and 0 <t —t, <t, <s,, we see
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that t;, — ¢, >0. Either s;—s; =t} —t; or s;—s; =t} —t; —s,. In the former
case,

J k'
E = 2 Yi»

i=j'+1 i=k+1
and in the latter,
Jj m k'
Yxt Y ox= ) Yi-
i=1 i=j'+1 i=k+1

Also solved by S. F. Barger and the proposer.

Vertex Sums of a Regular Simplex February 1995

1467. Proposed by John A. Baker, University of Waterloo, Waterloo, Ontario,
Canada.

Suppose that vy, v;,...,v, are the vertices of a regular simplex, S, in R" centered
at the origin. Let

U; = (U, V9,45 0;) for0<i<n.

Prove that, for some ¢ > 0,

n
Evfj=c forall j=1,2,...,n.
i=0

Solution by Sung Eun Koh, Konkuk University, Seoul, Korea.
Write v; for the vector from the origin to v;. Let x and y be arbitrary vectors in R”.
A solution follows from the more general identity:

o 0s) = (14 3l ey,

Since the regular simplex S is centered at the origin,
vot+ o +v, =0.

It suffices to prove the result assuming |lv;]| = 1. In this case v, vi=—1/n for i #j.
Multiplying by a small scalar, we may also assume that x and y are inside S. Then
there exist positive A;, u;,i=0,1,...,n, such that

X=Avy+ o +Ay,

Ayt A =1,
y=/“’0v0+ o +I‘ann’ I‘LO+ +/""n= L.
Since

virx=v; (Agvg + - +Ayv,) = (1"'%))‘:_%’

n'n

1 1
vi.y=vi‘( /'LOVO+ +l""nvn) = (1 + g)#‘z_ E>
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we see that
1) & 1
X‘y=(1+;)2Aillﬁ—ﬁ (1)
i=0
and that

Z et = (g (1 3)u-3)

i=0
= 1 1
=(1+71L') .EA{/"‘i_ﬁ(l"'F)' (2)
Comparing (1) and (2) we obtain
= 1
L o0y = (143 )y

when |v;]| = 1, and the claim follows.

Comment. Nick Lord points out the close relationship between this problem and
problem 1916 in Crux Mathematicorum 20 (1994), 48, which asserts that for a unit
vector x,

2
Z": I, — xl* = 4n+1)
n
i=0

Also solved by Robin Chapman (U.K.), Robert L. Doucette, Nick Lord (England), Robert Patenaude,
Van Vu Ha, and the proposer.

Solutions of a Matrix Equation February 1995
1468. Proposed by G. Trenkler, University of Dortmund, Dortmund, Germany.
Let A be a square matrix with real entries satisfying A2 = A”.

() Find its Moore-Penrose inverse A* in terms of A.
(i) Assume A is a 2 X 2 matrix. Find all solutions to A% = AT that are not symmetric.

() Solution by Stan Byrd and Ronald L. Smith, University of Tennessee at Chat-
tanooga, Chattanooga, Tennessee.

We will solve (i) in the more general case in which A is complex and A* = A*, the
conjugate transpose of A, for some inte er k = 2. Consequently, A = (Ak)* = (A")k
Then AF =(AF)*=(A*)*=A and A**! = AAF=(A*)**!. For X =A¥"2 it fol-
lows that

(@) AXA=AF =4,
(b) XAX = A%*=3 = AF-2 = ¥
(C) (AX)* = (Akz_l)* _((Ak+1)k 1)* = (((A*)k+l)k 1)* Akz_l — AX,

and similarly,
@ (xA)*=xA

which proves A*= AF-2,
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(i) Solution by Ahmad Muchlis, Institut Teknologi Bandung, Bandung, Indonesia.

Let A be a 2X 2 nonsymmetric, real matrix satisfying A”> = A”. The condition
A% = AT implies that A* = A. Then the minimal polynomial of A, m(A) is a factor of
M =2=MA-1)(A%+ A+1). The nonsymmetry of A forces m(A)=A>+A+1,
hence A is nonsingular. It follows from (i) that A™' =A*= AT, ie., A is orthogonal.
Therefore A is a rotation matrix, i.e.,

_[cos@ —sinf
A_(sinG cosG)

for some 0% 0. From A?=AT=A"! we obtain 20= — 0+ 2k, k an integer. For
0< 6<2m, we have 6=2m/3 or 0= 4m/3. We conclude that there are only two
2 X 2 nonsymmetric, real matrices A satisfying A% = A”, namely

( ~1/2 Js‘/z)

-1/2 —V3/2
-V3/2 -1/2

V32 -1/2

Also solved by Michael H. Andreoli, S. F. Barger, Glenn A. Bookhout, Robin Chapman (U.K.), Adam
Coffman, Robert L. Doucette, Tim Flood, Edwin T. Hoefer, Michael K. Kinyon, Gary Miller, Nicholas C.
Singer, Trinity University Problem Group, David Zhu, and the proposer.

Answers

Solutions to the Quickies on page 67.

A844. (i) Let t be a positive integer such that t2=x%+y? for positive integers x
and y. Defining A = (by, bx), B(ax,— ay), and C = (0, 0), we compute that BC = at,
AC =bt, and AB = ct. Thus A ABC is a solution to (i).

(i) It is impossible to have t =1 for a primitive Pythagorean triple. Assume that
there exist lattice points A, B, and C, as required, satisfying BC =a, AC =b, and
AB = ¢, where (a, b, c) is a primitive Pythagorean triple. Without loss of generality,
we may assume that C = (0,0), so that A = (kx, ky) and B = (my, — mx) for nonzero
integers k, m, x, and y. Then a® =m*(x%+y*?) and b? =k%(x? +y?). Because a
and b are relatively prime, x4+ y2 =1, a contradiction.

A845. Since 0=A"—-I=(A—-I)XI+A+A%+ - +A™ 1) and A—1+#0, it fol-
lows that I+ A+ A%+ -+ +A™"! is singular, so det(I + A — A2 + -+ +A™"1) =0,

A846. Let ABC be an isosceles triangle with AB=AC=x,BC=1/LA=
w/7,LB=C=3m/7 Choose D on AC so that £ ABD = m/7. Hence A ABD
and ABCD are isosceles. Let y = AD = BD. We have cos(m/7) = cos £ A =x/(2y),
cos(2m/7) = cos£. CBD =y /2, and cos(3m/7) =cos £C =1/(2x), and the result
follows.
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B

Comments

$1452, Concurrent Lines in a Triangle, June 1995. Peter Yff writes that “the locus
of the point of concurrence is a conic known as Kiepert’s hyperbola. This is a
rectangular hyperbola passing through A, B,C, the centroid, the orthocenter, the
Spieker center, the isogonic centers, and the Napoleon points.” He refers to page 223
of R. A. Johnson’s Advanced Euclidean Geometry.

$1454, Names Drawn From a Hat, October 1995. Hugh McGuire was inadver-
tently omitted from the list of those who solved the problem.

$1455, Equilateral Triangles in a Hexagon, October 1995. Michael Vowe (Switzer-
land) was inadvertently omitted from the list of those who solved the problem.
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REVIEWS

PAUL J. CAMPBELL, editor
Beloit College

Assistant Editor: Eric S. Rosenthal, West Orange, NJ. Articles and books are selected for
this section to call attention to interesting mathematical exposition that occurs outside the
mainstream of mathematics literature. Readers are invited to suggest items for review to
the editors.

Cipra, Barry, What’s Happening in the Mathematical Sciences: Vol. 8, 1995-1996, AMS,
1996; vi + 111 pp, $12 (P). ISBN 0-8218-0355-7.

As in earlier volumes in this series, Cipra reports on ten recent developments and discov-
eries in mathematics, in a lively nontechnical style. This volume’s topics are the finishing
off of Fermat’s Last Theorem; Witten and Seiberg’s discoveries in quantum field theory
and four-dimensional geometry; computer science’s realization that DNA can be a compu-
tational medium; Nicely’s revelation of the flaw in the Pentium chip; new developments in
control theory, computational fluid dynamics, and cellular automata; the attack to simplify
the proof of the classification theorem for simple groups; the factoring of RSA-129; and
applications of calculus in finance. You and your students need to have this book!

Special Section on Mathematics Applied to Games. The UMAP Journal 16 (1) (1995) 9-36,
71-77; 16 (2) (1995) 93-184; 16 (4) (1995) 341-88. Floyd, Jeffrey K., A discrete analysis of
“Final Jeopardy,” Mathematics Teacher 87 (5) (May 1994) 328-331. Woodward, Ernest,
and Marilyn Woodward, Expected value and the Wheel of Fortune game, Mathematics
Teacher 87 (1) (January 1994) 13-17.

Games have always inspired mathematicians and mathematics. Recently there has been
a new renascence of combinatorial game theory: The Mathematical Sciences Research
Institute (MSRI) held a workshop on the topic, and John Horton Conway spoke there and at
the 1994 International Congress of Mathematicians about the Hawaiian game of Konane and
about mancala-type games. The Special Section in The UMAP Journal is spread over three
issues; it treats both combinatorial games and games of chance. The first issue offers the
optimal strategy for the German dice game Klappenspiel, a surprise 7 in the combinatorics
of mancala-type games (with proof of a 40-year-old conjecture of Erdés and Jabotinsky),
and opportunities for student research. The second issues features a mathematical analysis
plus anthropological details of Konane, optimal strategies for the television game The Price
Is Right, the probability of winning at Frustration solitaire, and an instructional module on
the combinatorics of pinochle hands. The third issue contains a computer-aided analysis of
a mancala solitaire plus anthropological details, and an instructional module on Nim. The
cited papers in the Mathematics Teacher apply probability to popular television games:
Floyd gives an optimal strategy for the leader entering Final Jeopardy, and Woodward and
Woodward determine when a player should to continue to spin the Wheel of Fortune if
all players know the puzzle’s solution. (Note: I am the editor of The UMAP Journal and
co-author of one of the articles in the Special Section.)

75
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Amir, Amihood, and members of the SIGACT Long Range Planning Committee, Contri-
butions of theoretical computer science, http://www.cs.umd.edu/"smith/cont/cont.html,
11 December 1995.

This too-brief document attempts to “recognize the recent contributions of theoretical com-
puter science both to the practice of computing and to other endeavors of society.” It men-
tions new algorithms for cryptography, computational geometry, ATM (not automatic teller
machine but asynchronous transfer mode) networks, randomization in routing messages in
a parallel machine, efficient scheduling of multi-threaded computations, VLSI design, and
computational learning theory (handwriting recognition, speech recognition, DNA sequence
modeling). Cited as contributions to other disciplines are “sparse” dynamic programming
(for DNA sequence comparison), domain theory (developed as a foundation for the seman-
tics of programming languages, now applied in fractals, neural nets, and the Ising model
in statistical physics), an algorithm for convex hulls (used to determine needed support
structures in layered manufacturing), and network flow techniques (used to optimize tele-
scope settings). This potentially inspiring working document would be much more valuable
if expanded to five or ten times the length (it’s now three pages), to include definitions,
further discussion, and citations to references and specific applications.

Wilmott, Paul, Sam Howson, and Jeff Dewynne, The Mathematics of Financial Derivatives:
A Student Introduction, Cambridge U Pr, 1995; xiii + 317 pp, $49.95, $24.95 (P). ISBN
0-521-49699-3, 0-521-49789-2.

With the growth of all kinds of financial derivatives, there are substantial job opportunities
for mathematics majors in the finance industry. This book, which is suitable for a topics
seminar, would help them on their way, though they may need supplementary background to
become comfortable with probability density functions, partial differential equation initial-
value problems, and finite-difference and SOR. methods for obtaining numerical solutions.
Each chapter has exercises, with hints at the back of the book.

Robinson, Philip, Evangelista Torricelli, Mathematical Gazette 79 (1995) 37-47.

Torricelli (1608-1647) is famous as the inventor of the barometer. Briefly an assistant
to Galileo before succeeding him at the University of Pisa, Torricelli put Galileo’s work
on projectiles on a firm mathematical basis. It was Torricelli who first proved that the
maximum range in a vacuum is achieved for a launch angle of 45°, and he prepared gunnery
tables and a ranging instrument that were fundamental to ballistics for a century. This
article reproduces figures, arguments, and tables from Torricelli’s work.

Ballew, Hunter, Sherlock Holmes: Master problem solver, Mathematics Teacher 87 (8)
(November 1994) 596-601.

Author Hunter examines the adventures of detective Sherlock Holmes to exhibit for stu-
dents the connections between Holmes’ methods and mathematical problem solving. Apart
from deduction, Holmes emphasized careful observation and examination of details, an
open mind, the importance of gathering data, questioning the obvious, learning from expe-
rience, and indirect proof (“[W]hen you have excluded the impossible, whatever remains,
however improbable, must be the truth.”) Hunter quotes from specific adventures to illus-
trate Homes’s use of these problem-solving techniques. In addition, two adventures have
Holmes solving mathematical problems (estimating the speed of a train from the time to
pass consecutive telegraph poles, and using similar triangles to determine the height of a
tree that had been cut down).
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Stewart, Ian, The anthropomurphic [sic] principle, Scientific American 273 (6) (December
1995) 104-105. Matthews, R.A.J., Tumbling toast, Murphy’s law and the fundamental
constants. Furopean Journal of Physics 16 (4) (1995) 172-176.

Buttered toast falling off a table seems always to land buttered side down. Is this perversity
just Murphy’s Law at work? (“If anything can go wrong, it will.”) Mathematical journalist
Matthews’s analysis of the “murphodynamics” of falling toast reveals instead a “murphic
resonance” among the size of a piece of toast, the standard height of a table, and the earth’s
gravity. The toast must rotate at least 180°; but to land butter side up, it would have to
rotate at least 360° (so say Matthews and Stewart, but a trifle more than 270° would seem
to be enough). That can happen, but only if the overhang of the toast when it begins to
pivot and fall is sufficiently large. Further calculation, of the limiting height of bipedal
organisms, shows that the result does not really depend on the parameter values: “Any
universe that contains creatures remotely like us will necessarily inflict Murphy’s Law on
its inhabitants—at least if they eat toast and sit at tables.”

Denley, Chris, and Chris Pritchard, The golf ball aerodynamics of Peter Guthrie Tait,
Mathematical Gazette (1995) 298-313.

Peter Guthrie Tait was a professor of physics at the University of Edinburgh in the last
half of the nineteenth century. He was also an avid golfer (as many as five rounds a day!),
and that hobby inspired him to model the flight of a golf ball. This article relates several
of his models and compares them with computer simulations. Tait died before the advent
of dimpled golf balls, whose greater range depends on reduced drag because of turbulence.

Peterson, Ivars, Crinkled doughnuts: Math in the folds of a polyhedral crown, Science News
148 (23 & 30 December 1995) 432-433.

William T. Webber, a graduate student at the University of Washington, discovered how
to fold a toroidal polyhedron out of a piece of paper ruled into identical triangular faces.
Variations in the triangle produce variations in the toroidal “crown”; curiously, he has not
yet discovered such a crown that derives from an equilateral triangle.

Barbeau, Ed, After Math: Puzzles and Brainteasers, Wall & Emerson, 1995; x + 198 pp,
$14.95 (P). ISBN 0-921332-42-4. Barbeau, Edward J., Murray S. Klamkin, and William
0.J. Moser, Five Hundred Mathematical Challenges, MAA, 1995; xi + 227 pp, $29.50 (P).
ISBN 0-88385-519-4. Cofman, Judita, Numbers and Shapes Revisited: More Problems for
Young Mathematicians, Oxford U Pr, 1995; xi + 308 pp (P). ISBN 0-19-853460-4.

Many of the problems in Barbeau’s own book are ones that he originally contributed to the
University of Toronto Alumni Magazine and a supplementary newsletter. The problems
do not require mathematics beyond high school; solutions, comments, and extensions are
included. Most of the problems involve geometry, but here is a brief sample that does
not require a figure: “Find all positive integers whose square is equal to the fifth power of
the sum of its digits.” In competition with himself, Barbeau is also co-editor of a volume
of 500 “problems in pre-calculus mathematics,” aimed at an audience of students who
find pleasure in wrestling with and overcoming problems that are challenging and though-
provoking. Brief sample: “Show that every simple polyhedron has at least two faces with
the same number of edges.” The third collection of problems, by Cofman, is aimed at
“advanced secondary school pupils, aged fifteen and over.” It has 154 problems arranged in
ten topical chapters (e.g., Fibonacci sequences), which come from number theory, geometry,
combinatorics, and elementary group theory. Brief sample: “Solve the functional equation
zf(z) + 2f(—1/z) = 3 for real numbers x # 0.”
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Guidelines for Authors

General information Mathematics Magazine is an expository journal of undergraduate
mathematics.

Both adjectives in the preceding sentence are important. Articles submitted to the MAG-
AZINE should be written in a clear, lively, and inviting expository style. The MAGAZINE
is not a research journal; papers written in the “theorem-proof-corollary-remark” style are,
as a rule, unsuitable for publication. The best contributions contain examples, applications,
historical background, and illustrations. We especially welcome papers that include a histor-
ical element, and ones that draw connections among various branches of the mathematical
sciences, and between mathematics and other disciplines.

Every article should contain interesting mathematics, readably presented. Thus, for in-
stance, articles on mathematical pedagogy alone, or articles that consist mainly of computer
programs, are unsuitable unless accompanied by interesting mathematics.

The MAGAZINE is an undergraduate journal in the broad sense that it addresses both
teachers and students of collegiate mathematics. Among the intended uses of the MAG-
AZINE is to supplement and enliven undergraduate mathematics courses, especially at the
upper undergraduate level. Articles, therefore, should be attractive and accessible to non-
specialists, including well-prepared undergraduates.

Writing and Revising Mathematics Magazine is responsible first to its readers (most of
whom are mathematical generalists), and then to its authors. A manuscript’s publishability
depends, therefore, as much on its quality of exposition as on its mathematical significance.
Our general advice is simple: Say something new in an appealing way, or say something
old in a refreshing way. But say it clearly and straightforwardly, assuming a minimum of
technical background.

Good exposition in our sense is vigorous and informal, written in the active voice, and
rich with helpful examples. Minimize computation; stress motivation, insight, and illus-
tration. Illustrate your ideas with visually appealing graphics, including figures, diagrams,
tables, drawings, and photographs.

First impressions are especially important. Choose a short, descriptive, and attractive
title; be sure that the opening sentences provide an inviting introduction to the entire paper,
explaining its importance, its purpose, and its appeal.

Our referees are asked to check for mathematical accuracy, but also to give detailed sug-
gestions on stylistic matters. In practice, most papers require a careful revision by the au-
thor, followed by a thorough editing in our office.

References should be provided generously, since we aim to invite readers—including
students—to pursue ideas further. Bibliographies may contain suggested reading along with
sources actually used or cited.

Many useful general references on mathematical style and exposition are available. Sev-
eral are listed at the end of these notes.

Style and format Most papers are published either as Articles or as Notes. Articles have
a broader scope than Notes, and usually run longer than 2000 words. Notes are typically
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shorter and more narrowly focused. Articles should be divided into a few subsections, each
with a carefully chosen subtitle. Notes, being shorter, are usually less formally sectioned—
the normal connectives of English prose should suffice to maintain the flow of ideas. The
MAGAZINE itself is a ready source of examples for both forms.

In addition to expository pieces, we accept a limited number of Math Bites, poems, car-
toons, Proofs without Words, and other miscellanea. See any issue of the MAGAZINE for
examples of these genres.

Manuscripts should be clearly typewritten or laser-printed, with wide margins and line-
spacing. The title, author, and author’s address should appear at the top of the first page.
Pages should be numbered.

List references either alphabetically or in the order cited in the text; in either case, con-
sistency is essential. Please adhere very closely to the MAGAZINE'’s style for capitalization,
use of italics, etc. See any issue (and the references below) for examples. In particular, jour-
nal titles should be abbreviated as in Mathematical Reviews.

Figures and illustrations Figures and illustrations may be interspersed with text, but sep-
arate copies of all illustrations should also be supplied, both with and without added letter-
ing. Each illustration should be numbered, and referred to by number in the text. Authors
themselves are responsible for providing figures of publishable quality.

Submitting manuscripts Please submit three copies; keep a fourth copy as protection
against possible loss. Manuscripts and other correspondence should be mailed to

Paul Zorn, Editor, Mathematics Magazine, St. Olaf College, 1520 St. Olaf Av-
enue, Northfield, Minnesota 55057-1098.

Please include an E-mail address, if available.

Electronic submission Electronic submission of manuscripts and figures is possible in
limited circumstances. For details, contact mathmag@stolaf.edu.
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